China Good quality China Top Supplier Hospital Air Compressor Manufacturer air compressor oil

Product Description

China Top Supplier Hospital Air Compressor Manufacturer
China Top Supplier Hospital Air Compressor Manufacturer

Product Description

1. Description

  The compressed air is generated by the air compressor, enters the gas storage tank through the aftercooler, and then removes impurities, oil mist and moisture in the compressed air through the filter group and the adsorption dryer, and then is regulated by the pressure reducer. Compressed air ducts are used in medical equipment such as operating rooms and ICUs.

  The central compressed air station is composed of an air compressor, an aftercooler, a gas storage tank, a filter group, an adsorption dryer, an automatic control cabinet, and an alarm. Usually it is a two-unit configuration, 1 for each.

2. Why use dry, clean compressed air?

IInhibit the survival and reproduction of bacteria
Prevent condensation into liquid water at low temperatures
Liquid water will damage these equipment after entering the anesthesia machine or ventilator
Prevent icing blocked pipes below zero
High humidity in the pipe can cause oxidation of the pipe
 

3. Advantage
1.Oil-free design, ensuring the generation of qualified medical air
2.Reduced equipment failure frequency, saving costs 
3.Controlled moisture content, achieving high safety performance
 

 4. CHINAMFG Hospital Compressed Air Generator  Working Principle

 
4.1 Medical Compressed Air Station System Specifications

System Model  Air Compressor Purification controller Air tanks (M3) Output Consumption (M3/min) Output Pressure (Mpa)
Model  Number Model  Number
ETA-04 ET-YA041 1 ET-YK15 1 0.3 0.41 0.4-0.6
ETA-07 ET-YA042 1 ET-YK15 1 0.3 0.82 0.4-0.6
ETA-11 ET-YA043 1 ET-YK26 1 0.6 1.23 0.4-0.6
ETA-15 ET-YA042 2 ET-YK26 1 0.6 1.64 0.4-0.6
ETA-22 ET-YA043 2 ET-YK38 1 1 2.46 0.4-0.6
ETA-30 ET-YA043 3 ET-YK38 1 1 3.69 0.4-0.6

4.2 Air Compressor Specifications

Model

Output 

Consumption

 (M3/min)

Working pressure (Mpa) Power

Power

(KW)

L*W*H(mm) Weight(KG) Noise(dB)
ET-YA041 0.41 0.6-0.8 AC380V/50Hz/3P 4 1300×700×750 170 65±3
ET-YA042 0.82 0.6-0.8 AC380V/50Hz/3P 8 1300×700×1350 255 65±3
ET-YA043 1.23 0.6-0.8 AC380V/50Hz/3P 12 1300×700×1950 345 65±3

 4.3 Purification Controller Specifications

Model Capacity (M3/min) Working pressure (Mpa) Power 

Power

  (KW)

Dew Point (ºC) Weight (KG) L*W*H(mm) Noise(dB)
ET-YK15 1.5 0.6-0.8 AC220V/50Hz 30 </=-40 356 1300×900×1700 </=75
ET-YK26 2.6 0.6-0.8 AC220V/51Hz 30 </=-40 374 1300×900×1700 </=75
ET-YK38 3.8 0.6-0.8 AC220V/52Hz 30 </=-40 412 1300×900×1700 </=75

 
5. Quality Control Process
ETR Enigineering & Technology,clients can be sure of the quality of CHINAMFG solution. ETR uses only the best suppliers and components. And  all compress air system are tested & commissioned by professional Experts to make sure everything is qualified before they leave the factory.

 

 

FAQ

 1. Are you manufacturer or Trade Company?
   We are the manufacturer of compress air system, founded in 2003.

 2. What’s the order compress air system  process?
   a. Inquiry—provide us all clear requirements.
   b. Quotation—official quotation form with all clear specifications.
   c. Printing file— PDF, Ai, CDR, PSD, the picture resolution must be at least 300 dpi.
   d. Contract confirmation—provide correct contract details.
   e. Payment terms— Negotiable.
   f. Production—mass production
   g. Shipping— by sea, air or courier. Detailed picture of package will be provided.
   h. Installation and commissioning

3.What terms of payment you use?
   T/T, L/C etc.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Principle: Rotary Compressor
Application: Medical/Hospital/Clinic
Performance: Low Noise
Mute: Mute
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Good quality China Top Supplier Hospital Air Compressor Manufacturer   air compressor oilChina Good quality China Top Supplier Hospital Air Compressor Manufacturer   air compressor oil
editor by CX 2024-01-03