Product Description
Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.
| NO. | MODEL | Compressed medium | Flow rate Nm³/h |
Inlet pressure MPa |
Outlet pressure MPa |
Rotating speed r/min |
Motor power KW |
Cooling mode | Overall dimension mm |
Weight Kg |
| 1 | DW-14/(0-0.2)-25 | Raw gas | 800 | 0-0.02 | 2.5 | 740 | 160 | Water cooled | 4800*3200*1915 | ~10000 |
| 2 | VW-8/18 | Vinylidene fluoride gas | 418 | Atmospheric pressure | 1.8 | 980 | 75 | Water cooled | 3700*2000*1700 | ~4500 |
| 3 | VWD-3.2/(0-0.2)-40 | Biogas | 230 | 0-0.2 | 4.0 | 740 | 45 | Water cooled | 6000*2500*2650 | ~8000 |
| 4 | VW-9/6 | Ethyl chloride gas | 470 | Atmospheric pressure | 0.6 | 980 | 55 | Water cooled | 2800*1720*1700 | ~3500 |
| 5 | DWF-12.4/(9-12)-14 | Carbon dioxide | 6400 | 0.9-1.2 | 1.4 | 740 | 185 | Air cooled | 6000*2700*2200 | ~10000 |
| 6 | VWF-2.86/5-16 | Nitrogen gas | 895 | 0.5 | 1.6 | 740 | 55 | Air cooled | 3200*2200*1750 | ~3500 |
| 7 | DW-2.4/(18-25)-50 | Raw gas | 2900 | 1.8-2.5 | 5.0 | 980 | 160 | Water cooled | 4300*3000*1540 | ~4500 |
| 8 | VW-5.6/(0-6)-6 | Isobutylene gas | 1650 | 0-0.6 | 0.6 | 740 | 45 | Water cooled | 2900X1900X1600 | ~3500 |
| 9 | VW-3.8/3.5 | Mixed gas | 200 | Atmospheric pressure | 0.35 | 980 | 18.5 | Water cooled | 2200*1945*1600 | ~2000 |
| 10 | ZW-1.7/3.5 | Vinyl chloride gas | 100 | Atmospheric pressure | 0.35 | 740 | 15 | Water cooled | 2700X1600X2068 | ~2000 |
| 11 | ZWF-0.96/5 | Hydrogen chloride gas | 55 | Atmospheric pressure | 0.5 | 740 | 11 | Air cooled | 2000*1500*2000 | ~1000 |
| 12 | VW-0.85/(0-14)-40 | Refrigerant gas | 300 | 0-1.4 | 4.0 | 740 | 55 | Water cooled | 4500*2300*1780 | ~5500 |
| 13 | DW-3.78/(8-13)-(16-24) | Ammonia gas | 2700 | 0.8-1.3 | 1.6-2.4 | 740 | 75 | Water cooled | 3200*2000*1700 | ~3500 |
Related products
| Warranty: | 12 Months |
|---|---|
| Lubrication Style: | Customized |
| Cooling System: | Air/Water /Mixed Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Customized |
| Structure Type: | Open Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2023-12-02
China Hot selling High Quality Suspension System Car Air Compressor Pump for CHINAMFG Auto Car Parts air compressor oil
Product Description
Air Suspension Compressor Atuo Spare Parts Valve Block For CHINAMFG X351 AW933B484AF
1. OE quality and CHINAMFG price Company Profile HangZhou Xihu (West Lake) Dis. Xihu (West Lake) Dis. Auto Parts Manufacturing Co., Ltd.,The company mainly engaged inautomotive chassis components, engine accessories,spray series products. The company provide design, research and development,production, sales, for the domestic and foreign automotive assembly plant and the global after-sales market to provide high quality automotive parts. The company now provides supporting services for Mercedes Benz,Audi,BMW,Volkswagen,Por-sche,Land Rover,Bentley,Jaguaretc. Through brand positioning, the company provides high-quality original parts and cost-effective post-market brand parts for the global automotive sector.Now, it has set up agents and distributors in more than 35 countries around the world,XIHU (WEST LAKE) DIS. brand is the first batch of manufacturers approved by the Chinese ministry of commerce tomeet the export requirements.The company through the stable quality, the reliable prestigeand the customer first principle obtains the customer’s support.
What We Do FAQ Re: Our Trade Office In Xihu (West Lake) Dis. District ,HangZhou; Our Factory Located At Xihu (West Lake) Dis. District HangZhou City. We Warmly Welcome You To Visit With Us Anytime, More Details & Info Please Contact Us About Us XIHU (WEST LAKE) DIS. Brand, is a leading profeesional air suspension and chassis auto part company which specializing in developing, producing and exporting air suspension strut, air spring, air compressor, suspension repair parts, rubber sleeve, aluminum cover, power steering rack and so on. Our products can be installed in cars, trucks, trails, buses, and also compoatible with passenger cars and industrial products. We can provide more than 10,000 kind of products which fit for Mercedes-Benz, Audi, BMW, Land Rover, Porsch,etc. We always offer high quality products and best service so that we not only have a very large market percnetage in domestic maket but also keeping a steady growth in the global market. We export to North America, Europe, Middle East, Africa and Southest Asia, which included 90 countires and regions. Company Culture: Company philosophy: take it from the society and serve the society Service: 1.Quality Warranty: according to the clients’ request, we could guarantee fron 12 month to 24 months. Advantage 1. we are top 3 of professional air suspension manufacturer in China. OEM/ODM Service: – If you want to show your own brand LOGO on the goods such as cable, package bag, label or any where. Our OEM and ODM service is always ready to do it. Please contact with our sales team to get best support. Packing: Shipping:
| Order Sample | .shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc} Estimated freight per unit. Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them: 1. Mobility: The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications. 2. Power Source: Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity. 3. Tank Capacity: Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications. 4. Performance and Output: The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment. 5. Noise Level: Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability. 6. Price and Cost: Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs. When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use. Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality: 1. Air Filtration: Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness. 2. Moisture Control: Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness. 3. Oil Removal: If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal. 4. Regular Maintenance: Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers. 5. Air Receiver Tank Maintenance: Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system. 6. Air Quality Testing: Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards. 7. Education and Training: Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes. 8. Documentation and Record-Keeping: Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes. By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air. An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates: 1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use. 2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air. 3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand. 4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level. 5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems. 6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply. Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation. In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.
2. Fatigue Testing more than 6,054, A230325713 230325718 230325718 230325713
W251
A25132571 251320571 251320571 251325713 25132 164325713 16432
W220(4 Matic)
AA2203257138
W220
2203205013
W221(4 Matic)
A221320571 A221320571
W221
A22132 0571 3 A221325713
W211
AA211325713 211325713 211325718 211325718 21132 0571 3 21132 0571 8 21132 0571 3
Air Suspension Shock Absorber
F02
37126791676
E66(with ADS)
37126785536
E65 E66
37126785538
E53 X5
37116761444
Air Shock Absorber
L322
RNB40E 3D0616 970343571 970343 0571 4
Company purpose: people-oriented, customer first, integrity first! Company philosophy:mutual benefit and common developmentl Company direction: develop quality products,adhere to the brand strategy.Trust and integrity are the cornerstones of our long-lastingrelationships and is essential in fostering loyalty and teamwork. We care about our people,our customers,suppliers and communities and about creating a sustainable future together.
We develop and source great consumer products that consumers love to buy. We outperform our competition by bringing products to market faster and at higher value for our customers.Our unique production and sourcing process enables us to work very differently than buyingoffices and traditional trading companies, giving more responsibility and freedom to ouremployees.
1. Are You Manufacturer Or Trading Company?
Re: We Are Both Specialize In Auto Parts ( Air Suspension) Manufacturer & Trading Company.
2. What’s The MOQ?
Re: The MOQ With Our Standard Products Is 1 Piece.
3. What’s Your Mainly Products?
Re: We Supply Air Suspension Spring, Shock Absorber, Pressure Shocks, Air Pump etc.
4. What’s Your Policy On Warranty?
Re: We Provide 12 Months For New Suspension Parts Products For Our Customers.
5. Where Is Your Company?
6. What Are Your Payment Methods?
Re: We Accept T/T, Paypal, Western Union, Money Gram, Alipay. Due To Difference Payment In Difference Countries Or Regions.
7. What’s Your Packing Way?
Re: Neutral Packing, Standard Packing, Accept Customers’ Special Required.
8. How Do You Usually Ship The Goods And When?
Re: Normally, We Will Ship The Goods In 3-7 Days After Payment Verified And Goods Confirmed, And Ship The Goods Via The (HuangPu) Ports In GuangZhou.
9. If You Offer The Free Sample?
Re: We Accept MOQ 1 Piece Order, But Do Not Offer The Free Sample To Our Customers.
Development philosophy: dedicated to air spring technology research, build international top air suspension products
Company spirit: honesty, innovation, harmony and CHINAMFG development
2.Delivery time: within 7 days after getting your payments. Regarding the big orders, it need about 15-30 days.
according to our stocck and product task.
3.Quick response: We will reply to our clients within 24 hour and try our best to meet the clients request.
4.Good Service: Be Honest Forever.However you buy 1 pcs order or you buy more than 1000 pcs, we will sincerely reply to every client.
2. our factory has 120 staff, and we only produce 100% newly air suspension products for 10 years.
3. we have cooperated with 80 overseas companies with stable relationships. many are also brands or big sellers at Amazon or EBAY websites.
4. we have our own cars to test our products,except normal test machine and IATF16949:2016 certificate standard.
5. we have complete production line, Mercedes Benz,BMW Audi,Porsches,Land Rover,Volkswagen-these are our products,we has complete products line.
6. Our air suspension/air compressor/air strut/air suspension parts 100% NEWLY manufactured to instead OEM
7. We manufacture air suspension/air strut/air compressor to instead OEM ;
8. Constant temperature workshop for core parts;
9. Japan automatic welding machine to weld
– According to Standard Export Packing.
– Carton box, wooden box, wooden pallet.
– International express such as UPS, TNT, DHL, etc
– International air: CA, AA, EA, etc
– By sea
– Standard export sea port: Xihu (West Lake) Dis., Hongkong, Xihu (West Lake) Dis.
– Standard export airport: HangZhou, Hongkong, HangZhou
After-sales Service:
12 Month
Warranty:
12 Month
Material:
Stainless Steel
Samples:
1 Piece(Min.Order)
Customization:
Shipping Cost:
about shipping cost and estimated delivery time.
Payment Method:
Initial Payment
Full Payment
Currency:
US$
Return&refunds:
You can apply for a refund up to 30 days after receipt of the products.
.webp)
What are the differences between stationary and portable air compressors?
.webp)
How do you maintain proper air quality in compressed air systems?
.webp)
How does an air compressor work?


editor by CX 2023-12-02
China manufacturer 2BV Series CHINAMFG Stainless Steel Liquid Ring Vacuum Pump Water Ring Vacuum Pump and Air Compressor for Paper Making Chemical Industry with Good quality
Product Description
Product Description
The 2BV series water ring vacuum pumps and compressor is mainly used for sucking gases and water vapor,Particularly suitable for pumping pollution-free gas and steam (special gas needs to be specified when ordering), and the suction pressure can reach 33mbar absolute pressure (97% vacuum degree). When the water ring vacuum pump works for a long time when the suction pressure is close to the limit vacuum (saturated vapor pressure of working fluid), it is necessary to connect with the cavitation resistant pipe in order to get rid of the screaming and protect the pump.
In conjunction with ZheJiang University, China University of petroleum and other units, our company has continuously optimized its products and launched 2BV series water ring vacuum pumps. With its excellent performance and many advantages, our company has become a new generation of energy-saving products and will comprehensively replace SK, 2SK series water ring vacuum pumps and W, WY, WL and other reciprocating vacuum pumps with the same energy.
Our Advantages
1.The direct connection design of the motor saves space, is easy to install and maintain.
2.All adopt mechanical seal as standard configuration.
3.It is equipped with a cavitation protection pipe interface. If it works for a long time under the limit pressure, it will automatically open the cavitation protection pipe interface, which can maximize the suction effect and eliminate the cavitation sound, and effectively protect the vacuum pump.
4.The whole series is equipped with stainless steel impeller, which improves the corrosion resistance of the vacuum pump.
5.The unique flexible exhaust port design will not produce over compression, ensuring the best efficiency of the vacuum pump within its performance range.
Typical Use
——Oil and gas recovery. ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis
Product Parameters
| Type | Maximum air volume m3/min |
Pressure limit Pa |
power kW | revolution rpm | Motor explosion-proof grad | Water consumption L/min |
noise dB(A) | weight kg |
| 2BV2060-EX | 0.45 | 3300 | 1.1 | 2880 | d II BT4 | 2 | 62 | 39 |
| 2BV2061-EX | 0.87 | 3300 | 1.5 | 2880 | d II BT4 | 2 | 65 | 45 |
| 2BV2070-EX | 1.33 | 3300 | 2.2 | 2880 | d II BT4 | 2.5 | 66 | 66 |
| 2BV2071-EX | 1.83 | 3300 | 3 | 2880 | d II BT4 | 4.2 | 72 | 77 |
| 2BV6110 | 2.75 | 3300 | 4 | 1450 | d II BT4 | 7 | 63 | 153 |
| 2BV6111 | 3.83 | 3300 | 5.5 | 1450 | d II BT4 | 8.5 | 68 | 208 |
| 2BV6121 | 4.68 | 3300 | 7.5 | 1450 | d II BT4 | 10 | 69 | 240 |
| 2BV6131 | 6.68 | 3300 | 11 | 1450 | d II BT4 | 15 | 73 | 320 |
| 2BV6161 | 8.3 | 3300 | 15 | 970 | d II BT4 | 20 | 74 | 446 |
Detailed Photos
Water ring pump
High efficiency roots + water ring vacuum pump unit
High efficiency roots + water ring vacuum pump unit
Vacuum pump is used in the field of chemical plant
General Manager Speech
Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.
Company Profile
ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.
New plant plHangZhou
The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.
High precision machining equipment
The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.
Product quality wins consumer cooperationIn shipment ISO 9001 High tech enterprise certificate
Welcome to send your needs, we will provide you with the best service,
provide the greatest help!!!
| Warranty: | One Year |
|---|---|
| Oil or Not: | Oil Free |
| Structure: | Water Ring |
| Exhauster Method: | Entrapment Vacuum Pump |
| Vacuum Degree: | High Vacuum |
| Work Function: | Mainsuction Pump |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-12-02
China Hot selling CHINAMFG 100% Oil-Free Air Compressor with high quality
Product Description
CHINAMFG Oil-free Air Compressor
BROTIE oil-free lubricated air compressors belong to reciprocating, piston, single action and air-cooled portable air compressors, they are designed for the departments which need pure air source and higher environmental requirements. There is no need to add lubricating oil for this product, the exhaust gas does not contain oil and oil vapor and won’t pollute environment, compressed air consuming equipment and its product, therefore, it is an environment-friendly energy-saving product.
1. When it is used as a general power gas source, it is more convenient in use than oil lubricated air compressor and its maintenance cost is lower.
2. As the simplest and optimum equipment which provides high-quality oilless compressed air, it saves complicated oil filtering and treatment equipment, thus saving a lot of equipment expenditure and maintenance cost.
Select a machine type with at least 20% allowance when determining compressed air consumption.
Please take into account the condition that consumption of compressed air may be increased in the future. Correct type selection will reduce purchase and use cost.
For detailed models, please contact with CHINAMFG with no hesitation.
| Model | Capacity (m 3 /min) |
Discharge pressure (Mpa) |
Speed (r/min) |
Noise bd(A) |
Motor Power (KW) |
Size of discharge | Air Container Volume (M3) |
dimensions (L*W*H) |
| ZW-0.1/7 | 0.1 | 0.7 | 980 | ≤ 78 | 1.5(220V) | G1/4″ | 0.04 | 750*350*750 |
| ZW-0.24/7 | 0.24 | 0.24 | 950 | ≤ 81 | 2.2(380V) | G1/2″ | 0.08 | 1140*400*900 |
| ZW-0.3/7 | 0.3 | 0.7 | 950 | ≤ 81 | 2.2(380V) | G1/2″ | 0.08 | 1140*400*900 |
| VW-0.45/7 | 0.45 | 0.7 | 920 | ≤ 83 | 4(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.6/7 | 0.6 | 0.7 | 950 | ≤ 84 | 5.5(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.42/10 | 0.42 | 1.0 | 920 | ≤ 84 | 4(380V) | G1/2″ | 0.12 | 1300*460*960 |
| VW-0.5/14 | 0.5 | 1.4 | 670 | ≤ 84 | 5.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.6/10 | 0.6 | 1.0 | 740 | ≤ 84 | 5.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.9/7 | 0.9 | 0.7 | 810 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.9/10 | 0.9 | 1.0 | 810 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-0.7/12.5 | 0.7 | 1.25 | 740 | ≤ 84 | 7.5(380V) | G1/2″ | 0.18 | 1450*500*1100 |
| WW-1.25/7 | 1.25 | 0.7 | 860 | ≤ 85 | 11(380V) | G3/4″ | 0.28 | 1600*650*1200 |
| WW-1.25/10 | 1.25 | 1.0 | 770 | ≤ 85 | 11(380V) | G3/4″ | 0.28 | 1600*650*1200 |
| WW-1.6/10 | 1.6 | 1.0 | 820 | ≤ 85 | 15(380V) | G3/4″ | 0.32 | 1660*650*1220 |
| WW-1.8/10 | 1.8 | 1.0 | 900 | ≤ 86 | 15(380V) | G3/4″ | 0.32 | 1660*650*1220 |
| WW-1.2/10 | 1.2 | 1.0 | 740 | ≤ 84 | 5.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.8/7 | 1.8 | 0.7 | 810 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.8/10 | 1.8 | 1.0 | 810 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-1.4/12.5 | 1.4 | 1.25 | 740 | ≤ 84 | 7.5*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-2.5/7 | 2.5 | 0.7 | 860 | ≤ 86 | 11*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-2.5/10 | 2.5 | 1.0 | 770 | ≤ 86 | 11*2(380V) | G1″ | 0.30 | 1850*1250*1400 |
| WW-3.0/7 | 3.0 | 0.7 | 770 | ≤ 86 | 11*2(380V) | G1″ | 0.32 | 1850*1250*1400 |
| WW-3.0/10 | 3.0 | 1.0 | 810 | ≤ 86 | 11*2(380V) | G1″ | 0.32 | 1850*1250*1400 |
| WW-3.2/7 | 3.2 | 0.7 | 820 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.2/10 | 3.2 | 1.0 | 820 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.6/7 | 3.6 | 0.7 | 900 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-3.6/10 | 3.6 | 1.0 | 900 | ≤ 86 | 15*2(380V) | G1″ | 0.32 | 1900*1500*1500 |
| WW-4.8/10 | 4.8 | 1.0 | 900 | ≤ 86 | 15*2(380V) 11*1(380V) | G3/2″ | / | 2210*1360*1050 |
| Performance: | Low Noise |
|---|---|
| Type: | Piston |
| Drive Mode: | Electric |
| Piston Type: | Closed |
| Configuration: | Portable |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-12-01
China Hot selling Diesel Driven Screw Air Compressor for 200-300m Deep Well Drilling with Hot selling
Product Description
Product Description
famous brand CHINAMFG KSZJ-29/23 air compressor for 200-300m deep well drilling machine
Application area
this diesel engine screw air compressors are widely used in highways, railways, mines, water conservancy, and shipbuilding, urban construction, energy and other industries.
KAISHAN diesel engine screw air compressor KSZJ-29/23 Features
1.Low operating sound and less vibration design.Easy serviceability.
2.Low fuel consumption to realize far distance outdoor usage;Full protection system,energy saving.
3.High efficient Airend:
Large diameter rotor, airend connect with diesel engine through coupling and no reduction gear inside, more reliability, the
rotate speed is same with the diesel engine’s, more longer lifespan.
5.Good adaptability:
The Portable Air Compressor automatically control the air delivery of diesel engine by matching the demand of air consumption,
which equals to frequency conversion control in motor power screw air compressor.
Specific performance of hot selling in Chile KAISHAN air compressor KSZJ-29/23 air compressor for deep well drilling
1.Air filteration system: High efficient air inlet filter to prevent motor and airend rotors damaged by dirt particles
2.High efficient airend: Large rotors design and large bearings are used to ensure low RPM.This ensured low operating sound minimal vibration and extended operating life
3.Modulation Control: Based on air demang,the modulation valve will control the inlet air capacity and diesel enginer RPM to minimize the fuel consumption . Its features maximum energy saving.
4.Control panel: easy to control; high water temperature alarm , high pressure alarm ,high discharge air temperature alarm and high
RPM alarm are all part of it’s features.
5.Cooler: Larger cooler and fan design to ensure maximum cooling especially for the extreme operating environment.
Product Parameters
|
Model No. |
KSZJ-29/23 |
|
Capacity |
29 m³/min (1036cfm) |
|
Working pressure |
23bar (334psi) |
|
The head model no. |
SKY11G194 |
|
Air compressor oil capacity |
65L |
|
Compression Stage: |
2 |
|
Outlet connection size*Qty |
G2×1, G3/4×1 |
|
Engine |
|
|
Engine Model No: |
Yuchai YC6MK400L-K30 |
|
Cylinder bore stroke number of cylinders |
120×145×6 |
|
Displacement |
9.839L |
|
Rated RPM |
1800r/min |
|
Unload RPM |
1400r/min |
|
Rated Power |
288KW(400HP) |
|
Diesel engine oil Capacity |
28L |
|
Fuel Tank Capacity |
350 L |
|
Electrical System Voltage |
24V |
|
Package |
|
|
Wheel size * Qtys |
7.5-16*4 |
|
Weight |
4850KGS |
|
Dimension (mm) |
3500×1950×2030 |
After Sales Service
1,24/7 service by chat online and phone.
2,Lifelong and free technical support.
3,Service overseas: if you need, we can dispatch an engineer to your door.
Company Profile
ZheJiang Rancheng Machinery Co.,LTD is 1 professional supplier drilling rigs in China ,we
are dedicated in designing and manufacture water well drilling rigs ,rotary drilling rig ,anchor drilling rig ,DTH drilling rig ,solar pile driver,mud pump ,air compressor and drilling tools etc,we have advanced technology ,Modern equipment, first-class team and rich experience ,our products passed ISO9001 ,CE etc certificated ,they are exported to around 200 countries and areas in the world ,get very good feedbacks from our clients.
We pursue the principle of “Customer First, Integrity First”, we are sincerely expecting to cooperate with you!!!
FAQ
1.Why choose us ?
Rancheng Machinery is a very professional drilling rig supplier in China. We have rich experience in this industry for 11 years.Now our products are serving around the world.we have High Quality, Competitive Price, and Fast Shipment.
2.Do you offer any custom designs?
Yes,we have our own trade factory. We provide services to top range partners.Produce a superior product for you by your designs.
3,How to make sure the quality we sent to you is same with what we said?
We are the Golded supplier on Alibaba, order through the alibaba trade assurance, will ganrantee the safe of your money and the quality of the goods.
4.How To Order ?
Step 1, please tell us what model and quantity you need;
Step 2, then we will make a PI for you to confirm the order details;
Step 3, when we confirmed everything, can arrange the payment;
Step 4, finally we deliver the goods within the stipulated time.
5.After-sales Service
1 year warranty for all kinds of products;
If you find any defective accessories first time, we will give you the new parts for free to replace in the next order, as an experienced manufacturer, you can rest assured of the quality and after-sales service.
6,whether we can visit your factory
Yes ,you are warmly welcome to visit us .
| After-sales Service: | Provide |
|---|---|
| Warranty: | 1 Year |
| Cooling System: | Air Cooling |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-12-01
China best Industrial Variable Speed Drive VSD Dry Oil Free Screw Air Compressor Rdo-75A/W air compressor parts
Product Description
Product Description
Industrial Energy Saving Variable Speed Drive VSD Dry Oil Free Screw Air Compressor
Product Features:
1.Industry-leading air end, imported brand, quality assurance.
2. IE3 motor, save your electricity cost, IP54, B-level temperature rise is suitable for harsh environments such as large dust and high temperature;
3.Multiple noise reduction design, calculated according to noise theory, with special flame retardant muffler cotton inside, to reduce the noise of the unit and provide a quieter environment for use.
4.Independent air inlet, reduce intake resistance, multi-function intake valve group, start without load, motor load is small. Use high-efficiency filters to effectively filter particulates in the air.
5.Centrifugal fan with plate-fin cooler has high wind pressure, low noise, external independent suction, exhaust air upward through a specially designed air duct to prevent hot air from returning.cooler modular design, vertical installation, effectively eliminate thermal stress , More stable operation and long service life.
6.Optimized shock absorption pad to reduce vibration and noise.
Technical Parameters
| Dry Oil-free Screw Air Compressor RDO Series | ||||||||||
| Model | Air Delivery (m3/min) | Powe (kW) |
Noise dB(A) |
Outlet diameter |
Dimension (mm) | Weight (Kg) |
||||
| 7bar | 8bar | 10bar | Air-cooled | Water-cooled | Air-cooled | Water-cooled | ||||
| RDO-45A/W | 4.5-7.8 | 4.0-6.8 | 3.7-6.4 | 45 | 69±3 | DN50 | 2200*1400*2000 | 2200*1500*1720 | 2650 | 2700 |
| RDO-55A/W | 5.7-9.8 | 5.2-9.0 | 4.4-7.8 | 55 | 69±3 | DN50 | 2200*1400*2000 | 2200*1500*1720 | 2850 | 2900 |
| RDO-75A/W | 7.6-13.0 | 7.2-12.2 | 6.6-11.2 | 75 | 70±3 | DN50 | 2200*1400*2000 | 2200*1500*1720 | 2950 | 2900 |
| RDO-90A/W | 9.6-16.0 | 8.1-13.8 | 7.6-13.1 | 90 | 71±3 | DN50 | 2200*1400*2000 | 2200*1500*1720 | 3000 | 2950 |
| RDO-110A/W | 12.1-20.6 | 11.6-19.5 | 11.1-18.8 | 110 | 71±3 | DN65 | 3000*1990*2180 | 2800*1900*1990 | 3500 | 3550 |
| RDO-132A/W | 14.7-24.8 | 13.6-23.0 | 11.5-19.5 | 132 | 73±3 | DN65 | 3000*1990*2180 | 2800*1900*1990 | 3550 | 3600 |
| RDO-160A/W | 16.9-28.5 | 15.6-26.3 | 14.1-23.8 | 160 | 73±3 | DN65 | 3000*1990*2180 | 2800*1900*1990 | 3650 | 3750 |
| RDO-185A/W | 19.5-32.8 | 17.1-28.9 | 16.3-27.5 | 185 | 74±3 | DN65 | 3000*1990*2180 | 2800*1900*1990 | 4100 | 4200 |
| RDO-200A/W | 21.8-36.8 | 20.4-34.6 | 18.1-30.6 | 200 | 74±3 | DN100 | 4500*2000*2100 | 3100*2100*2065 | 5100 | 4500 |
| RDO-220A/W | 24.9-41.5 | 22.4-37.3 | 19.8-33.0 | 220 | 74±3 | DN100 | 4500*2000*2100 | 3100*2100*2065 | 5600 | 5000 |
| RDO-250A/W | 27.3-46.0 | 25.3-42.8 | 22.7-38.2 | 250 | 74±3 | DN100 | 4500*2000*2100 | 3100*2100*2065 | 5700 | 5200 |
| RDO-280A/W | 31.6-48.6 | 30.9-47.5 | 29.3-45.0 | 280 | 76±3 | DN100 | 4500*2000*2100 | 3100*2100*2065 | 5800 | 5300 |
| RDO-315A/W | 34.1-52.5 | 32.9-50.6 | 31.5-48.5 | 315 | 77±3 | DN100 | 4500*2000*2100 | 3100*2100*2065 | 6000 | 5400 |
Successful cases
Packaging & Shipping
1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
4.Delivery time: in 7-15 days after receiving deposit (customized machines not included)
Buyer Reviews
Company Profile
ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!
Certifications
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24month |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-01
China Hot selling Economical Water Cooling High Pressure Air Compressor Manufacturer 12v air compressor
Product Description
High Pressure Electric/Diesel Air Booster/Air Compressor
Introductions:
Our products have complete varieties and specifications. From the compressor type, it is divided into mobile type, fixed type, vehicle-mounted type, skid-mounted type and so on. Compressed media include air, natural gas, liquefied petroleum gas, hydrogen, recycled gas, nitrogen, ammonia, propylene, biogas, coalbed methane, carbon dioxide, etc. From the cylinder lubrication method, it is divided into oil lubrication and oil-free lubrication. From the compression type, it is divided into reciprocating piston type and screw type. Products are widely used in metallurgical machinery manufacturing, urban construction, steel, national defense, coal, mining, geology, natural gas, petroleum, petrochemical, chemical, electric power, textile, biology, medicine, glass and other industries.
Main features:
1. The compressor is manufactured by air-cooling and water-cooling technology, with high reliability and long service life.
2. The compressor unit has a high degree of automation. The unit operation is controlled by a programmable controller PLC and is equipped with multiple protections.
3. Automatic shutdown protection, unloading restart, automatic drainage, and alarm for insufficient oil.
| Flow rate | ≤50 Nm³/min |
| Pressure | ≤40 MPa |
| Medium | air, nitrogen, carbon dioxide, natural gas |
| Control | PLC automatic control |
| Drive mode | electric motor, diesel engine |
| Cooling method | air cooling, water cooling, mixed cooling |
| Installation method | mobile type, fixed type, vehicle-mounted type, skid-mounted type |
Main Technical Parameters:
| NO. | Model | Rotating Speed (r/min) |
Intake Pressure (Mpa) |
Exhaust Pressure (Mpa) |
Exhaust Volume (Nm³/min) |
Dimension (L*W*H)mm | Drive Power/Shaft Power(KW) | Weight (T) | Remark |
| 1 | SF-10/150 | 1330 | Atmospheric Pressure | 15 | 10 | 5500*2000*2300 | 227/139 | 6 | Stationary Diesel Engine |
| 2 | SF-10/150 | 1330 | 15 | 10 | 7500*2300*2300 | 227/139 | 8 | Container Skid Mounted Diesel Engine | |
| 3 | SF-10/250 | 1330 | 25 | 10 | 5500*2000*2300 | 227/173 | 6 | Stationary Diesel Engine | |
| 4 | SF-10/250 | 1330 | 25 | 10 | 7500*2300*2300 | 227/173 | 8 | Container Skid Mounted Diesel Engine | |
| 5 | SF-10/250 | 1330 | 25 | 10 | 15710*2496*3900 | 227/173 | 21.98 | Vehicular | |
| 6 | WF-10/60 | 1000 | 6 | 10 | 6000*2200*2200 | 135/110 | 6 | Container Skid Mounted Diesel Engine | |
| 7 | W-10/350 | 980 | 35 | 10 | 15710*2496*3900 | 303/187 | 21.98 | Vehicular | |
| 8 | WF-0.9/3-120 | 980 | 0.3 | 12 | 0.9 | 5100*2000*2350 | 75/50 | 5.4 | Container Skid Mounted Diesel Engine |
| 9 | SF-1.2/24-150 | 1200 | 2.4 | 15 | 1.2 | 7500*2300*2415 | 303/195 | 8.6 | Container Skid Mounted Diesel Engine |
| 10 | W-0.86/17-350 | 1000 | 1.7 | 35 | 0.86 | 8500*2500*2300 | 277/151 | 12 | Container Skid Mounted Diesel Engine |
| 11 | W-1.25/11-350 | 980 | 1.1 | 35 | 1.25 | 8000*2500*2500 | 185/145.35 | 15 | Container Skidding Motor |
| 12 | LG.V-25/150 | Screw 2279 Piston 800 | Atmospheric Pressure | 15 | 25 | 7000*2420*2300 | 355 | 16 | Container Skidding Motor |
| Model | Flow | Pressure | Stages | Cooling Type | Rotating Speed | Power |
| m³/min | Mpa | r/min | ||||
| SVF-15/100 | 15 | 10 | 1+2 | Air Cooling | 1150 | Diesel series |
| SVF-18/100 | 18 | 10 | 1+2 | 1150 | ||
| SVF-20/120 | 20 | 12 | 1+2 | 1150 | ||
| LGW-15/100 | 15 | 10 | 1+2 | 1150 | ||
| LGW-15/150 | 15 | 15 | 1+3 | 1150 | ||
| LGW-15/200 | 15 | 20 | 1+3 | 1150 | ||
| LGW-20/100 | 20 | 10 | 1+2 | 1150 | ||
| LGW-20/150 | 20 | 15 | 1+2 | 1150 | ||
| LGS-24/150 | 24 | 15 | 1+2 | 1150 | ||
| LGS-30/150 | 30 | 15 | 1+2 | 1150 | ||
| LGW-25/150 | 25 | 15 | 1+2 | Water cooling | 980 | Electric tandem |
| LGV-25/250 | 25 | 25 | 1+3 | 740 | Diesel series | |
| LGW-12/275 | 12 | 27.5 | 1+3 | 980 | Electric tandem | |
| LGV-15/85 | 15 | 8.5 | 1+2 | 980 | ||
| LGV-15/250 | 15 | 25 | 1+3 | Air Cooling | 740 | |
| LGV-15/350 | 15 | 35 | 1+4 | Water cooling | 740 | |
| LGV-15/400 | 15 | 40 | 1+4 | 740 | ||
| LGV-12.5/400 | 12.5 | 40 | 1+4 | 740 | ||
| LGV-15/100 | 15 | 10 | 1+2 | 740 |
Application Industry:
1. Suitable for oilfield pressure test, line sweeping, gas lift, well drilling and other projects.
2. Used in air tightness testing, air tightness inspection, pressure test, strength inspection, air tightness verification and other fields of various high-pressure vessels or pressure vessels such as gas cylinders, steel cylinders, valves, pipelines, pressure meters, high-pressure boilers, etc. .
3. On-board pressure testing, pressurization, pipeline pressure testing, line sweeping, gas lift and other projects in oil exploration.
4. Sand blasting and rust removal, parts dust removal, high pressure phosphorus removal, anti-corrosion engineering, well drilling operations, mountain quarrying.
5. For hydropower station turbine control and high-voltage power grid air short-circuit device for arc extinguishing.
6. Provide air source for large and medium-sized bottle blowing machines.
| Principle: | Reciprocating Compressor |
|---|---|
| Configuration: | Portable |
| Flow Rate: | ≤50 Nm³/Min |
| Pressure: | 0.1MPa-40MPa |
| Medium: | Air, Nitrogen, Carbon Dioxide, Natural Gas |
| Control: | PLC Automatic Control |
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-12-01
China Hot selling Je-Jz Series High-Efficiency Centrifugal Air Compressor with high quality
Product Description
I. Production Description:
Centrifugal turbo compressors have become 1 of the JTL’s key products since the technical cooperation with American ETI company, covering CHINAMFG centrifugal compressor, high efficiency centrifugal air compressor, centrifugal steam compressor, maglev CHINAMFG compressor. CHINAMFG focuses on large flow rate and high pressure centrifugal compressors, the flowrate ranges from 80 cubic CHINAMFG per hour to 2000 cubic CHINAMFG and pressure range from 2.2 bar to 40 bar, which are widely applied in energy industry, waste water plants, pharmaceutical factories, petrochemical factories, metallurgical industry.
| Model | Flowrate (m3/h) | Discharge Pressure (BarG) | Motor Power (KW) | Weight (Ton) | Length (m) | Width (m) | Height (m) |
| JE280-800 | 80-130 | 2.2-12.5 | 280-800 | 11.0 | 3.8 | 2.0 | 2.0 |
| JE800-1120 | 130-180 | 2.2-12.5 | 450-1120 | 12.5 | 4.0 | 2.2 | 2.1 |
| JE1120-1700 | 180-270 | 2.2-12.5 | 560-1700 | 17.0 | 4.4 | 2.2 | 2.3 |
| JE1700-2400 | 270-380 | 2.2-12.5 | 800-2400 | 26.0 | 5.2 | 2.3 | 2.5 |
| JE2400-3100 | 380-550 | 2.2-10.5 | 1120-3100 | 41.5 | 7.6 | 3.6 | 2.9 |
| JE3100-600 | 550-1000 | 2.2-10.5 | 1500-6000 | 46.5 | 8.5 | 4.0 | 4.8 |
| JE6000-8000 | 1000-1500 | 2.2-10.5 | 2600-8000 | 70.0 | 12.5 | 5.5 | 5.0 |
II. Performance and Festures:
1. The flowrate setting range between 45% to 100%.
2. The system is ensured in high efficiency working by IGV+DV double control settings.
3. Stable working, free of pressure impulse and low noise.
4. Integrated design with small installation space which is convenient to replace the old-fashioned and low-efficiency blast fan.
5. The system is of small installation space from integrated design which replaces the old model low efficiency blowers.
6. Oil-free air supplied at the outlet.
7. High-quality bearing structure with long service life, easy operation and low cost maintenance.
8. Standardized control system with CHINAMFG instruments and meters, friendly operational system.
III. Applications:
IV. Projects:
V. Partners:
VI. Exhibition:
VII FAQ:
Q1. Are you a factory?
A1. Yes, CHINAMFG Tech is the stock listed company in HangZhou stock market and has production base in HangZhou City ZheJiang Province.
Q2. Where is your factory?
A2. Our Production base in HangZhou City ZheJiang Province, and we have other fatories in ZheJiang , HangZhou, HangZhou
Q3. Do you support OEM?
A3. We support free OEM for more than 3 units.
Q4. How long is your warranty?
A4. We insist on providing customers with the best protection, the whole machine, 24 months warranty, 36 months warranty for the host.
Q5. What certification do you have?
A5. At present, we have passed CE and ISO 9001 certification. quality assurance.
Q6. What payment methods do you support?
A6. We support TT, B / L.
Q7. How long is your delivery time?
A7. Generally, our delivery period is within 20 days, and the specific delivery period depends on the customer’s specific order.
Q8. What accessories do you use for your machine?
A8. Our spare parts and hosts only cooperate with big brands, we insist on winning customers with quality.
Q9. How many years of history does your factory have?
A9. Our factory started in 1993, we insist on continuous innovation and research and development. In April 2571, we have just launched a new product, welcome new and old customers to consult.
Q10. Do you have an official website?
A10. sollantmachinery If you have any questions, please feel free to contact us.
| After-sales Service: | Yes |
|---|---|
| Warranty: | 12 Months |
| Mute: | Mute |
| Impeller: | Turbo Impeller |
| Cooling System: | Oil Cooling |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-11-30
China high quality Original New SAA6d170e-3e-8 Engine Parts Air AC Compressor 6240-81-3100 best air compressor
Product Description
Why choose us!!!
Shipping in 3 days.
Factory price.
Support 7 days refund
Support genuine or normal packing
1 year warranty
Payment online by credit card
| Delivery time | in stock | ||
| MOQ | 1 pc | ||
| quality | 100% new |
RecommendProduct
ZheJiang HangZhou Hydraulic Co., Ltd. is a professional enterprise specializing in the technical development, manufacturing and marketing of hydraulic orbit components. Main products are hydraulic orbit motors, hydraulic winches, hydraulic brakes, hydraulic steel hole punchers, hydraulic steerings, etc.
The company is committed to the development of high-tech and manufacturing technology. We have outstanding experience in product design, manufacturing processes and quality assurance.Orbit motors mainly used in injection molding machines, fishery machinery, construction machinery, oil drilling machinery, mining machinery, agricultura machines and garden machines.
Our products have been exported to countries such as the United States Germany,Brazil,Canada,India, Turkey, Poland ,Thailand etc. We aim to become a world-class manufacturer of hydraulic products. Our CHINAMFG pursuit and objectives is to improve the performance of our products as a starting point and to provide the best products and service to our customers.
| After-sales Service: | Training/Online Support/Changing Spare Parts |
|---|---|
| Warranty: | 1 Year |
| Type: | Hydraulic Pump |
| Samples: |
US$ 300/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-11-30
China Professional Un Medical Air Oxygen Compressor of Hfnc High Flow Nasal Cannula portable air compressor
Product Description
Medical Air Compressor:
Model:UN-3000
UN-Medical High-flow Heated Respitatory Humidifier HFNC with Air Compressor
·Medical device treatment: In addition to drug treatment, respiratory support treatments relying on medical devices, such as oxygen therapy, invasive mechanical ventilation, extracorporeal membrane oxygenation (ECMO), and circulatory support are of much helpful to those the most serious cases of pneumonia. It also plays an important role in the treatment of critically ill patients. It is time to introduce our high flow oxygen blender for replacement. It is very helpful for the early infection cases and the recovery patients from critical stages.
·High Flow Nasal Cannula(HFNC) oxygen therapy is a form of non -invasive respiratory support, which comprises an air oxygen blender, an active humidifier, a single heated circuit and a nasal cannula. It delivers adequately heated and humidified medical gas up to 10-60L/min, and is considered to have a number of physiological effects: reduction of anatomical dead space, PEEP effect, constant fraction of inspired oxygen and good humidification. It is widely used in RICU and ICU.
Specification:
| Adjustment Method of Oxygen Concentration | Merchanical |
| FiO2 | 21%-100% |
| Flow | 2-18LPM;1-10LPM and 10-120LPM |
| Pressure of gas source | Air/Oxygen @ 0.3-0.4 Mpa |
| Blender Alarm | When gas supply pressure difference > 0.1 Mpa |
| Blender Alarm Noise | >57 dB(A) |
| Accuracy of FiO2 | 3% |
| Humidifier Supply Voltage/Frequency | 220V/ 110V 50/60Hz |
| Humidifier Temperature monitoring | 0-75ºC |
| Humidifier Heater Plate Over-temperature Cut Off | 95±5ºC |
| Heater Wire(Max.) | 22V-,2.73A, 60W, 50/60Hz |
| Humidifier Temperature control settings | Heated wire mode(mode indicator lighted) |
| Temperature grade(with indicator status) Continuous flow range Delivered patient temperature P1 (·○○) 5L/min-60L/min 25-29ºC P2 (··○) 5L/min-60L/min 29-35ºC P3 (···) 5L/min-60L/min 35-39ºC |
|
| Non-heated wire mode(It is not recommended in adult HFNC. Operate manual of humidifier show details) |
Configuration and Package:
Multiple Choices:
Applications and Custom Choices:
HFNC Machine without Medical Air Compressor
HFNC Machine with Medical Air Compressor
Exhibitions Image
Factory Image
Shipment and payment
For the order which less than 20units, more of the customers choose the shipment by Express Courier or by Air Cargo.
Our normal Lead Time is within 5-7working days after payment.
Contact us: Yuki. Cai
| Type: | Hfnc Machine |
|---|---|
| Function: | Respiratory Therapy |
| Theory: | Oxygen Therapy |
| Certification: | CE, FDA, ISO13485 |
| LCD Display: | Without LCD Display |
| Group: | Adult |
| Samples: |
US$ 2200/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-11-30