Tag Archives: electric compressor

China wholesaler High Performance Variable Frequency Electric Screw Air Compressor Compresor De Aire De Tornillo air compressor lowes

Product Description

Product Description

High Performance Variable Frequency Electric Screw Air Compressor compresor de aire de tornillo

Model: RDF-125A
Free air delivery:  15.5 m3/min
Working pressure: 8 bar
Control: automatic PLC controller
Driven: direct driven, elastic coupling
Cooling: by air
Starting: Frequency conversion start
Electric motor: VSD 125hp 90kw 380V/50hz/3ph
Discharge temperature: less than ambient +8 ºC
Noise: less than 72 dB(A)
Air outlet size: G2″
Dimension: 2000*1120*1590mm
Weight: 1421kg

Variable frequency screw air compressor:
1. Constant pressure control: It can realize high-precision constant pressure control with a pressure fluctuation range of 0.01 MPa;
2. Variable frequency soft start: Eliminate the CHINAMFG current when starting, avoid grid impact, avoid current impact through step-by-step speed adjustment, and improve flexibility
3. Prevent no-load: The compressor is no-load during operation, reducing ineffective energy consumption;
Permanent magnet motors use high-efficiency rare earth magnets, no loss of magnetism at 180°C, and long service life; energy saving is about 6% to 7% compared with ordinary frequency conversion motors;
It can exert the highest efficiency in a wider range and make the air compressor more energy-saving.

Product Parameters

Technical Parameters
 

Model Volume flow m3/min Power (KW) Noise (DB) Outlet diameter Dimension (mm) Weight (kg)
0.7Mpa 0.8Mpa 1.0Mpa 1.3Mpa Length Width Height
RDF-30A 3.7 3.6 3.2 / 22 68 G1 1330 830 1265 400
RDF-40A 5.2 5 / 3.3 30 68 G1 1330 830 1265 500
RDF-50A 6.5 6.2 5.6 4.9 37 69 G1 1/2 1500 940 1415 655
RDF-60A 8.0 7.3 6.0 5.9 45 70 G1 1/2 1500 940 1415 730
RDF-75A 10.1 9.5 8.7 7.3 55 70 G2 1600 1060 1470 945
RDF-100A 13.6 12.8 11.3 9.2 75 72 G2 2000 1120 1590 1291
RDF-125A 16.1 15.5 13.6 12.5 90 72 G2 2000 1120 1590 1421
RDF-150A 21.2 19.6 17.8 15.5 110 72 DN65 2400 1630 1980 2170
RDF-175A 24.1 23.2 19.5 17.8 132 72 DN65 2400 1630 1980 2350
RDF-220A 28.8 27.8 23.0 20 160 72 DN80 2800 1828 2150 3620
RDF-250A 32.5 31.2 27.5 25.8 185 72 DN80 2800 1828 2150 3920
RDF-275A 34.5 34.0 30.5 28.0 200 76 DN80 2800 1828 2150 4200
RDF-300A 36.8 34.7 31.5 29.5 220 76 DN100 3000 1900 1930 4800
RDF-350A 43.0 41.5 38.0 34.9 250 76 DN100 3000 1900 1930 5200
RDF-375A 51.3 50.6 46.0 41.5 280 82 DN100 4360 2150 2258 7500
RDF-420A 56.8 55.9 50.1 42.0 315 82 DN125 4360 2150 2258 7500
RDF-475W 66.1 65.4 55.1 46.0 355 82 DN125 4360 2150 2258 8000
RDF-525W 75.1 74.3 64.5 54.0 400 82 DN125 4360 2150 2258 8200

Packaging & Shipping

1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
4.Delivery time: in 7-15 days after receiving deposit (customized machines not included)

Certifications

Company Profile

FAQ

Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24month
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China wholesaler High Performance Variable Frequency Electric Screw Air Compressor Compresor De Aire De Tornillo   air compressor lowesChina wholesaler High Performance Variable Frequency Electric Screw Air Compressor Compresor De Aire De Tornillo   air compressor lowes
editor by CX 2023-12-19

China Best Sales Cheap Electric Energy Saving Screw Air Compressor High Efficiency Made for Medical at Nice Price best air compressor

Product Description

Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!

Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP

Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug

Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.

Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models

SPECIFICATION

MODEL LG-15Z-10
Ambient Temperature -5ºC to +45 ºC
Max Pressure (bar) 1.0 
Air Delivery (m3/min) 1.3
Compression Stage Single Stage Compression
Cooling Method Air Cooled
Discharge Temperature (ºC) ≤ 75ºC
Oil  Cotent (ppm) ≤3
Transmission Method Direct Driven
Sound Level dB(A) 66±3
Lubricating Oil Amount 7.5L
Motor Power 11KW/15HP
Motor Level Of Protection  IP55
Voltage 380V/3ph/50Hz
Dimensions (mm) 1060×720×1005(L*W*H)
Weight 290KG
Discharge Outlet Thread 3/4”

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Transmission: Coupling
Samples:
US$ 980/set
1 set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China Best Sales Cheap Electric Energy Saving Screw Air Compressor High Efficiency Made for Medical at Nice Price   best air compressorChina Best Sales Cheap Electric Energy Saving Screw Air Compressor High Efficiency Made for Medical at Nice Price   best air compressor
editor by CX 2023-12-09

China Standard Two-Stage Oil Industrial High Pressure Electric Air Compressor lowes air compressor

Product Description

ADEKOM KHP Series 2-stage Oil-injected rotary screw air compressors provide a reliable air supply of up to 18~25 bar for high-pressure applications in the toughest working conditions, for example Bottle blowing (PET), Pharmaceutical industry, Food industry, Rubber tire manufacturing, Hydropower, Well drilling, Military, Biological and Chemical industry and many more applications.

Features

• High reliability (heavy duty)

• More economic maintenance

• Energy saving (with inverter)

• Low noise level

• Low vibration level

• Easy installation

• Big operational saving in comparison to all other systems

ADEKOM (ASIA PACIFIC) LIMITED founded in the late 90’s is a specialized air/gas compressors and treatment system manufacturer with headquarter in Hong Kong. Its partners located in Vicenza, Italy and Germering, Germany are the world’s leading manufacturers with global recognition and experience in designing, manufacturing and marketing of rotary screw air/gas compressors for decades. QUALITY, RELIABILITY and ENERGY EFFICIENCY have been the main objectives of serving customers all over the world. CHINAMFG follows the company core of its European partners, is committed to the research & development, quality assurance and satisfaction of customers’ needs. Today, what CHINAMFG can do is not just to supply the best products to the market, but to provide THE TOTAL SOLUTION TO YOUR NEEDS!

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Position: Angular
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Standard Two-Stage Oil Industrial High Pressure Electric Air Compressor   lowes air compressorChina Standard Two-Stage Oil Industrial High Pressure Electric Air Compressor   lowes air compressor
editor by CX 2023-12-08

China supplier 11kw 15HP Stationary Industrial Air Cooled Electric Permanent Magnet Variable Frequency Air Compressor Rotary Screw Type Air Compressor Dm-15A best air compressor

Product Description

Product Description
HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate normally in a high temperature environment of 46°C.

Product Feature
1. Adhering to the concept of pursuing high-quality products, HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate continuously and normally in a high temperature environment of 46 °C.

2. Adopt the world-renowned CHINAMFG main motor. The protection grade is IP55. The insulation grade is F grade 100.

 

3. The gas circuit adopts the stainless steel pipe design of the American SAE standard, with low resistance and strong corrosion resistance, which completely eliminates the common problems of oil leakage, air leakage and air leakage under high pressure.

4. The patented synchronous two-stage compression technology is adopted, so that the compression ratio of each stage of the screw host is less than 6, which is lower than that of the ordinary screw air compressor, which ensures the service life of the screw host.

5. Each stage of the screw host has an independent oil cooling system and an automatic water removal system to ensure that the screw host can run stably around the clock.

6. The powerful third-generation e-Control controller has 6 operation monitoring points to comprehensively monitor the working conditions of the main engine, air filter, oil filter, oil separator, cooler and other important components, so that the compressor can run stably.
 

Specification
 

Mode HSV75A (W)-40 HSV90A (W)-40 HSV110A (W)-40 HSV132A (W)-40
Operating Pressure    Bar (g) 40 40 40 40
Motor speed (kw) 75 90 110 132
Exhaust volume (m³/min) 5.5 7.2 9.0 10.0
Cooling method water cooling water cooling water cooling water cooling
Noise dB(A) 72(75) 74(78) 74(78) 74(78)
Length 2550 3150 3150 3150
Width 1480 1880 1880 1880
Height 1850 1850 1850 1850
         
Mode HSV75A (W)-35 HSV110A (W)-30 HSV55A-25 HSV90A-25
Operating Pressure Bar(g) 35 30 25 25
Motor speed (kw) 75 110 55 90
Exhaust volume (m³/min) 7.6 11.0 5.4 9.5
Cooling method air cooling (water cooling ) air cooling(water cooling ) 74(78) air cooling
Noise dB(A) 72(75) 74(78) 72(75) 74(78)
Length 2550 3150 2550 3150
Width 1480 1880 1480 1880
Height 1850 1850 1850 1850
         
Mode HSV180A-25 HSV110A (W)-20    
Operating Pressure Ba(g) 25 20    
Motor speed (kw) 180 110    
Exhaust volume (m³/min) 19.0 12.5    
Cooling method air cooling(water cooling ) air cooling(water cooling )    
Noise dB(A) 78(82) 74(78)    
Length 3980 3150    
Width 1980 1880    
Height 1980 1850    

 

After-sales Service: Online
Lubrication Style: Lubricated
Cooling System: Air Cooling
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China supplier 11kw 15HP Stationary Industrial Air Cooled Electric Permanent Magnet Variable Frequency Air Compressor Rotary Screw Type Air Compressor Dm-15A   best air compressorChina supplier 11kw 15HP Stationary Industrial Air Cooled Electric Permanent Magnet Variable Frequency Air Compressor Rotary Screw Type Air Compressor Dm-15A   best air compressor
editor by CX 2023-11-21

China supplier Double Stage Pm VSD Electric Rotary Industrial Two Stage Screw Air Compressor portable air compressor

Product Description

Product Description

 Double stage PM VSD Electric Rotary Industrial Screw Type Two Stage Air Compressor For Sale

Permanent magnet variable frequency 2 stage screw air compressor:
1. Constant pressure control: It can realize high-precision constant pressure control with a pressure fluctuation range of 0.01 MPa;
2. Variable frequency soft start: Eliminate the CHINAMFG current when starting, avoid grid impact, avoid current impact through step-by-step speed adjustment, and improve flexibility
3. Prevent no-load: The compressor is no-load during operation, reducing ineffective energy consumption;
Permanent magnet motors use high-efficiency rare earth magnets, no loss of magnetism at 180°C, and long service life; energy saving is about 6% to 7% compared with ordinary frequency conversion motors;
It can exert the highest efficiency in a wider range and make the air compressor more energy-saving.

Technical Parameters
 

Two-stage PM VSD Screw Air Compressor
Model Air Delivery (m3/min) Power
     (kW)
Noise
(Db)
Outlet
diameter
Dimension (mm)   Weight
    (Kg)
7bar 8bar 10bar 13 bar L * W * H
RK30APMII 1.4-4.5 1.3-4.2 1.1-3.5 0.8-2.7 22 68 G11/2 1350x850x1110 600
RK40APMII 1.8-6.0 1.7-5.9 1.4-4.7 1.2-4.0 30 68 G11/2 1200x1000x1350 700
RK50APMII 2.3-7.5 2.1-6.9 1.8-6.0 1.6-5.4 37 68 G11/2 1500x1000x1350 750
RK60APMII 3.2-10.5 3.0-9.9 2.3-7.8 2.0-6.8 45 72 G2 2100x1300x1650 1250
RK75APMII 4.1-13.6 3.8-12.5 3.0-10.1 2.3-7.5 55 76 G2 2100x1300x1650 1300
RK100APMII 4.8-16.0 4.7-15.5 3.8-12.8 3.1-10.2 75 76 G2 2100x1300x1650 1350
RK125APMII 6.2-20.7 5.9-19.5 4.8-16.2 4.2-14.0 90 76 DN80 2500x1650x1900 2700
RK150APMII 7.4-24.8 7.2-24.0 6.1-20.2 4.8-16.0 110 76 DN80 2500x1650x1900 2800
RK180APMII 8.7-29.0 8.4-28.0 7.1-23.7 5.7-19.0 132 78 DN80 2500x1650x1900 3000
RK220APMII 10.2-34.0 9.8-32.5 8.4-28.0 6.9-23.0 160 78 DN80 3000x1900x1950 4300
RK250APMII 11.7-39.0 10.8-36.0 9.6-32.0 8.3-27.5 185 78 DN80 3000x1900x1950 4400
RK275APMII 13.1-43.5 12.3-41.0 10.7-35.5 9.5-31.5 200 78 DN100 3600x2200x2200 5000
RK300APMII 15.5-51.5 14.5-48.3 11.6-38.5 10.7-35.5 220 82 DN100 3600x2200x2200 5500
RK350APMII 16.2-54.0 15.3-51.0 13.5-45.0 11.4-38.0 250 82 DN100 3600x2200x2200  6000
RK380APMII 18.0-60.0 17.1-57.0 15.0-50.0 12.9-43.0 280 82 DN125 3600x2200x2200  6800
RK420APMII 19.5-65.0 18.6-62.0 16.8-56.0 15.2-50.5 315 82 DN125 4200x2300x2350  8000
RK480APMII 22.5-75.0 21.9-73.0 19.2-64.0 16.5-55.0 355 82 DN150 4200x2200x2350  8500
RK540APMII 25.2-84.0 24.6-82.0 21.6-72.0 18.3-61.0 400 82 DN150 4200x2200x2350  9800

Two stage air end
Feature:Two-stage compressor air-end
Advantage:Low compression ratio, Low temperature rising, Low air leakage
Benefit:15% energy-saving

High-efficiency Motor
Feature:IE4 permanent magnet motor/IE4 High-efficiency motor
Advantage:Motor efficiency 97%
Benefit:5% energy-saving

Intelligent control
Feature:VFD system
Advantage:Constant pressure output to remove pressure fluctuation and off-load, Constant temperature output at 9-~85°C, Low starting current to protect components
Benefit:15% energy-saving

Smart display screen
Feature:Intelligent control system
Advantage:10 inch monitor to show all the date
Benefit:Simple operation and touble free

Cooling fan
Feature:Large cooler system
Advantage:Axial flow Fan used for good cooling effect
Benefit:Allow ambient temperature at 52°C

Systematic Design of Oil separator
Feature:Large oil system
Advantage:Reduce internal pressure loss avoid oil, Leakage for safety
Benefit:3% energy-saving

Filter
Feature:Double filtering system
Advantage:Remove impurity from air and cleanness
Benefit:Longer life air -end and lubrication oil

Air inlet valve
Feature:High vacuum degree:700mmHg
Advantage:Large suction area, Low load energy consumption in unloaded operation, 
Fast check: prevent unloading and shutdown oil injection
Benefit:Cast aluminum to avoid rust and temperature change

Certifications

Two-stage compression variable frequency air compressors are widely used in electronics, metallurgy, aerospace, pipelines, furniture processing, machinery, petroleum gas, printing plants, plastic products, power plants, blow molding, painting, casting, spraying, automotive industry, metal industry , shipping terminals, food industry, textile factories, beverage factories and other industries.

Packaging & Shipping

Packaging & Shipping
1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
4.Delivery time: in 7-15 days after receiving deposit (customized machines not included)

Successful cases

Company Profile

ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!

 

Product process

After Sales Service

1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in CHINAMFG air compressor factory or working site.
5.All kinds of technical documents in different languages.

 

After-sales Service: Online Support
Warranty: 24month
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China supplier Double Stage Pm VSD Electric Rotary Industrial Two Stage Screw Air Compressor   portable air compressorChina supplier Double Stage Pm VSD Electric Rotary Industrial Two Stage Screw Air Compressor   portable air compressor
editor by CX 2023-11-17

China Hot selling Electric Low-Pressure Rotary Screw Air Compressor Cheap Price CHINAMFG Compresor De Aire 5bar Industrial Air Compressor manufacturer

Product Description

 Low Pressure Screw Air Compressor

♦ Intelligent Touch-Screen Design

♦ Direct-driven

♦ Air Cooling

♦ Oil Filter

♦ Air Filter 

♦ Stainless Steel

♦ Piping Design

Product Features

1.Specially designed PM motor.

2.Enhanced energy savings.

3.Low Energy Consumption,Low running,maintenance cost.

4.Aptitude and intelligent Control, integrated touch-screen PLC displayer.

5.Unique safe units make whole compressor more safety, more stable,lest noise,lest energy Loss.

6.Easy to install,operate,maintain.

Specially designed PM motor:

The PM motor efficiency is even higher than IE3 premium efficiency motors. The motor uses high performance magnetic materials giving many advantages such as bearing free operation, grease free maintenance, direct 1:1 coupling without transmission losses, low noise and low vibration leading to a compact structure.

Enhanced Energy Savings:

When demand is low the PM low pressure compressor firstly reduces the speed to maintain the correct flow demand. If the air demand stops the compressor enters standby mode, saving further energy. The compressor automatically restarts and runs when the pressure drops below its setpoint.

The latest generation intelligent touchscreen controller:

SCR’s latest touchscreen interface allows simple intelligent control for your compressor. Pressure and scheduling times can be easily programmed allowing you to automatically start and stop the compressor to match production times. Remote operation and real time monitoring are built in the controller as standard.

Specially designed oil pipe system:

The oil system has been specially designed to reduce maintenance downtime and extend the periods between maintenance visits.

Model Pressure
(mpa)
Displacement
(m3/min)
Power
(kw)
Dimension
(mm)
Weight
(kg)
Air Outlet
LPS-0.5/15 0.5 3.87 15 900*1150*1260 610 G1 1/2″
LPS-0.3/22 0.3 7.16 22 1550*980*1360 840 G2″
LPS-0.5/22 0.5 6.3 900*1150*1260 690
LPS-0.3/30 0.3 9.2 30 1680*1050*1395 890 G2″
LPS-0.5/30 0.5 8.22 1550*980*1360 840
LPS-0.3/37 0.3 12.1 37 1800*1250*1600 1740 DN65
LPS-0.5/37 0.5 9.8 1680*1050*1395 890
LPS-0.3/45 0.3 15 45 2571*1250*1650 1810
LPS-0.5/45 0.5 12 1800*1250*1600 1740
LPS-0.3/55 0.3 19.3 55 2571*1250*1650 1920 DN80
LPS-0.5/55 0.5 15 2571*1250*1650 1810
LPS-0.3/75 0.3 24.7 75 2500*1600*1800 3110
LPS-0.5/75 0.5 19.1 2571*1250*1650 1920
LPS-0.3/90 0.3 28.8 90 2500*1600*1800 3230 DN100
LPS-0.5/90 0.5 21.5 2500*1600*1800 3110
LPS-0.3/110 0.3 33 110 3100*1550*2200 3350
LPS-0.5/110 0.5 28.8 2500*1600*1800 3230
LPS-0.3/132 0.3 45.5 132 3100*1550*2200 4350 DN125
LPS-0.5/132 0.5 34.7 2770*2050*2200 3570
LPS-0.3/160 0.3 47 160 2900*1860*2000 4700
LPS-0.5/160 0.5 41.2 2770*2050*2200 4550
LPS-0.3/185 0.3 50 185 2900*1860*2000 4770
LPS-0.5/185 0.5 47.4 2770*2050*2200 4550
LPS-0.3/200 0.3 55.7 200 2900*1860*2000 4880
LPS-0.5/200 0.5 51.5 2770*2050*2200 4550

ZheJiang CHINAMFG Gas Compressor Manufacturing Co.,Ltd. founded in 2005, is a leading high technology of machine and equipment manufacturer integrating the design, R&D, production, sales and service for air compressors & Mining Equipment. Adopting advanced technology, design concept and quality control, and we are able to provide customized products to meet customers’ OEM needs.
Our company has more than 520 employees, including 86 senior technicians and professional engineers. Our technical team provides our customers with professional air system solutions. With the total 15000 square meters of the facility, 4 modern advanced production lines are built up to ensure production capacity to meet customer requirements.
Our company has been awarded the honorary title of “ZheJiang high-tech enterprise” and our products enjoy high honors in the industry. Our company has the ISO9001 certification and was awarded the qualification certificate of equipment through military contracts in 2018.
We offer the following products and services:
1. Screw air compressor
    1.1 Oil-free screw air compressor
    1.2 Oil-injected air compressor
2. Reciprocating piston air compressor
    2.1 Piston air compressor
    2.2 Oil-free piston air compressor
    2.3 Piston medium & high-pressure air compressor
3.Portable air compressor & Mining Equipment
    3.1 Diesel or Electric portable screw air compressor
    3.2 Air Pick, Rock Drill, DTH Drilling Rig, Crawler Drilling Rig
4. Air compressor accessories
    4.1 CHINAMFG or Adsorption compressed air drier
    4.2 Compressed air filter or tank
    4.3 Lubrication oil
We have a complete system of after-sales service and quality assurance. The company’s material purchase, inspection, manufacturing, installation, and testing are strictly in accordance with the ISO procedures. which will ensure each compressor has reliable quality and has a complete record to trace, if needed.
Q: Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery.

Q: How can we start order with your factory?
A: First, leave us an inquiry and advise which item you’re interested, and then we will contact you in 24 hours. You’re so kind if provide all detailed information, will better for us to know exactly what you need.

Q: What are your MOQ?
A: Different products have different MOQ, most is 1 set.

Q: What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages.

Q: How about your delivery time?
A: Generally, it will take 90 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q: Do you a trade company or real factory?
A: We are 100% factory; we located in ZheJiang city, China.

After-sales Service: Online Support
Warranty: 1 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Closed Type
Samples:
US$ 1500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Hot selling Electric Low-Pressure Rotary Screw Air Compressor Cheap Price CHINAMFG Compresor De Aire 5bar Industrial Air Compressor   manufacturer China Hot selling Electric Low-Pressure Rotary Screw Air Compressor Cheap Price CHINAMFG Compresor De Aire 5bar Industrial Air Compressor   manufacturer
editor by CX 2023-11-11

China best Industrial Stationary Similar CHINAMFG Rand CHINAMFG 7 8 10 Bar Medical Oil Free Electric Direct Driven Pmsm Pm VSD Rotary Screw Type Air Compressor air compressor lowes

Product Description

Germany Technology Industrial Silent Oil-free Electrical Rotary Oil Free Screw Air Compressor

Water-lubricated Oil-free Screw Air Compressor Advantages

1.Clean air 100% oil-free
 
2.Use water instead of oil, higher cooling efficiency and compression efficiency
 
3.Optimal isothermal compression
 
4.Powerful MAM microcomputer controller and touch screen
 
5.Reasonable Structure, with perfect balancing
 
6.Components made of anti-rust and anti-corrosion materials ensure the durability
 
7.Significant energy saving, environmental-friendly and pollution-free
 
8.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
 

Water lubricated oil free compressor-technical parameters:
 

Model Work pressure Capacity Power Noise Inlet and outlet diameters of cooling water Water inlet & outlet
T/H
Lubricating water
L
Dimensions Weight Air outlet diameter

 

WZS-06PMA 8.5 0.3~0.78 5.5 57 3/4″ 1.5 10 800x800x1100 460 3/4″
10.5 0.2~0.65
WZS-08PMA 8.5 0.35~1.17 7.5 57 3/4″ 2 10 800x800x1100 510 3/4″
10.5 0.3~1.05
12.5 0.24~0.81
WZS-11PMA 8.5 0.54~1.72 11 60 1″ 2.5 26 1200x800x1300 620 3/4″
10.5 0.45~1.42
12.5 0.35~1.10
WZS-15PMA 8.5 0.75~2.43 15 60 1″ 3.5 26 1200x800x1300 670 1″
10.5 0.65~2.17
12.5 0.6~1.85
WZS-18PMA 8.5 0.9~3.13 18.5 63 1″ 4 30 1400x1000x1520 730 1″
10.5 0.9~2.82
12.5 0.6~2.05
WZS-22PMA 8.5 1.1~3.62 22 63 1 1/2″ 5 30 1400x1000x1520 780 1″
10.5 0.97~3.21
12.5 0.85~2.78
WZS-30PMA 8.5 1.55~5.12 30 66 1 1/2″ 7 40 1500x1150x1500 1150 1 1/2″
10.5 1.255~4.43
12.5 1.1~3.63
WZS-37PMA 8.5 1.91~6.30 37 66 1 1/2″ 9 40 1500x1150x1500 1200 1 1/2″
10.5 1.60~5.33
12.5 1.42~4.77
WZS-45PMA 8.5 2.50~8.30 45 68 1 1/2″ 10 90 1800x1300x1750 1490 2″
10.5 1.91~6.30
12.5 1.70~5.56
WZS-55PMA 8.5 3.0~9.76 55 69 1 1/2″ 12 100 1800x1300x1750 1570 2″
10.5 2.60~8.55
12.5 2.30~7.67
WZS-75PMA 8.5 3.95~13.00 75 72 1 1/2″ 18 100 1800x1300x1750 1750 2″
10.5 3.40~11.50
12.5 3.0~9.70
WZS-90PMA 8.5 5.0~16.60 90 73 1 1/2″ 20 120 2200x1550x1800 2450 2 1/2″
10.5 4.30~14.66
12.5 3.72~12.60
WZS-110PMA 8.5 6.0~19.97 110 77 1 1/2″ 24 120 2200x1550x1800 2580 2 1/2″
10.5 5.0~16.66
12.5 4.65~15.56
WZS-132PMA 8.5 6.75~22.52 132 77 2″ 30 120 2200x1550x1800 2700 2 1/2″
10.5 6.0~19.97
12.5 5.07~16.90
WZS-160PMA 8.5 8.5~28.11 160 79 3″ 35 160 3000x1800x2100 3900 3″
10.5 706~25.45
12.5 6.7~22.52
WZS-185PMA 8.5 10~33.97 185 79 3″ 38 160 3000x1800x2100 4050 3″
10.5 8.72~29.00
12.5 7075~25.210
WZS-200PMA 8.5 11.2~36.75 200 80 4″ 42 200 3100x1850x2100 4200 4″
10.5 9.68~32.78
12.5 9.2~29.24
WZS-220PMA 8.5 12.2~39.67 220 80 4″ 47 200 3100x1850x2100 4400 4″
10.5 11.2~36.75
12.5 9.0~29.63
WZS-250PMA 8.5 13.5~44.78 250 80 4″ 53 200 3100x1850x2100 4800 4″
10.5 12.3~39.67
12.5 10.2~33.97

 
Wan CHINAMFG Certification

Wan CHINAMFG Exhibition

FAQ

1.  OEM/ODM, or customer’ s logo printed is available?

     Yes, OEM/ODM, customer’s logo is welcomed.

2.  Delivery date?
     Usually 5-25 working days after receiving deposit, specific delivery date based on order quantity.
 

3.  What’s your payment terms?

     Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our  cooperation.
 

4.  How to control your quality?

     We have professional QC team, control the quality during the mass production and inspect the products before shipping.
 

5.  If we don’ t have shipping forwarder in China , would you do this for us?

     We can offer you best shipping line to ensure you can get the goods timely at best price.
 

6.  I never come to China before , can you be my guide in China?

     Sure , I’m glad to be your guide because our company directly located in ZheJiang , where is the most famous city in China, if you want to come China then we are happy to provide you one-stop service, such as booking ticket, picking up at the airport, booking hotel, accompany visiting factory. It gonna make you an unforgettable memory.

MARKETING NETWORK

After-sales Service: 24/7 Service Support
Warranty: Unit 1 Year, Air End 2 Years
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China best Industrial Stationary Similar CHINAMFG Rand CHINAMFG 7 8 10 Bar Medical Oil Free Electric Direct Driven Pmsm Pm VSD Rotary Screw Type Air Compressor   air compressor lowesChina best Industrial Stationary Similar CHINAMFG Rand CHINAMFG 7 8 10 Bar Medical Oil Free Electric Direct Driven Pmsm Pm VSD Rotary Screw Type Air Compressor   air compressor lowes
editor by CX 2023-11-07

China Custom 22kw Energy Saving Electric Stationary Direct Driven Water Lubricated Oil Free Single Screw Air Compressor for Food Package Medical Devices with high quality

Product Description

Model Work pressure Capacity Power Noise Inlet and outlet diameters of cooling water Water inlet & outlet
T/H
Lubricating water
L
Dimensions Weight Air outlet diameter

 

WZS-06PMA 0.8 0.3~0.78 5.5 57 3/4″ 1.5 10 800x800x1100 460 3/4″
1.0 0.2~0.65
WZS-08PMA 0.8 0.35~1.17 7.5 57 3/4″ 2 10 800x800x1100 510 3/4″
1.0 0.3~1.05
1.25 0.24~0.81
WZS-11PMA 0.8 0.54~1.72 11 60 1″ 2.5 26 1200x800x1300 620 3/4″
1.0 0.45~1.42
1.25 0.35~1.10
WZS-15PMA 0.8 0.75~2.43 15 60 1″ 3.5 26 1200x800x1300 670 1″
1.0 0.65~2.17
1.25 0.6~1.85
WZS-18PMA 0.8 0.9~3.13 18.5 63 1″ 4 30 1400x1000x1520 730 1″
1.0 0.9~2.82
1.25 0.6~2.05
WZS-22PMA 0.8 1.1~3.62 22 63 1 1/2″ 5 30 1400x1000x1520 780 1″
1.0 0.97~3.21
1.25 0.85~2.78
WZS-30PMA 0.8 1.55~5.12 30 66 1 1/2″ 7 40 1500x1150x1500 1150 1 1/2″
1.0 1.255~4.43
1.25 1.1~3.63
WZS-37PMA 0.8 1.91~6.30 37 66 1 1/2″ 9 40 1500x1150x1500 1200 1 1/2″
1.0 1.60~5.33
1.25 1.42~4.77
WZS-45PMA 0.8 2.50~8.30 45 68 1 1/2″ 10 90 1800x1300x1750 1490 2″
1.0 1.91~6.30
1.25 1.70~5.56
WZS-55PMA 0.8 3.0~9.76 55 69 1 1/2″ 12 100 1800x1300x1750 1570 2″
1.0 2.60~8.55
1.25 2.30~7.67
WZS-75PMA 0.8 3.95~13.00 75 72 1 1/2″ 18 100 1800x1300x1750 1750 2″
1.0 3.40~11.50
1.25 3.0~9.70
WZS-90PMA 0.8 5.0~16.60 90 73 1 1/2″ 20 120 2200x1550x1800 2450 2 1/2″
1.0 4.30~14.66
1.25 3.72~12.60
WZS-110PMA 0.8 6.0~19.97 110 77 1 1/2″ 24 120 2200x1550x1800 2580 2 1/2″
1.0 5.0~16.66
1.25 4.65~15.56
WZS-132PMA 0.8 6.75~22.52 132 77 2″ 30 120 2200x1550x1800 2700 2 1/2″
1.0 6.0~19.97
1.25 5.07~16.90
WZS-160PMA 0.8 8.5~28.11 160 79 3″ 35 160 3000x1800x2100 3900 3″
1.0 706~25.45
1.25 6.7~22.52
WZS-185PMA 0.8 10~33.97 185 79 3″ 38 160 3000x1800x2100 4050 3″
1.0 8.72~29.00
1.25 7075~25.210
WZS-200PMA 0.8 11.2~36.75 200 80 4″ 42 200 3100x1850x2100 4200 4″
1.0 9.68~32.78
1.25 9.2~29.24
WZS-220PMA 0.8 12.2~39.67 220 80 4″ 47 200 3100x1850x2100 4400 4″
1.0 11.2~36.75
1.25 9.0~29.63
WZS-250PMA 0.8 13.5~44.78 250 80 4″ 53 200 3100x1850x2100 4800 4″
1.0 12.3~39.67
1.25 10.2~33.97

Q1:Do you offer OEM/ODM/Customer’s logo print?
A1:Yes,OEM/ODM,Customer’s logo are welcomed.  

Q2:Delivery Time?
A2:Usually 5-25 days after receiving deposite, specific delivery date depends on order quantity.  

Q3: What’s your payment terms?
A3:Regularly 30% deposite and 70% balance by T/T,Western Union,Paypal ,other payment terms also can be discussed based on our cooperation.  

Q4:How to control your quality?
A4:We have professional QC team,control the quality during the mass production and inspect all goods before delivery.  
Q5:If we don’t have shipping forwarders in China, can you do that for us?
A5:We can offer best shipping line to ensure you can get the goods timely  at best price.  

Q6:I never come to China before,can you be my guide in China?
A6:We are happy to provide you one-stop service,such as booking the ticket,pick up at the airport, booking hotel,accompany visiting market or factory.

Warranty: Unit 1 Year, Air End 2 Years
Lubrication Style: Water Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Custom 22kw Energy Saving Electric Stationary Direct Driven Water Lubricated Oil Free Single Screw Air Compressor for Food Package Medical Devices   with high qualityChina Custom 22kw Energy Saving Electric Stationary Direct Driven Water Lubricated Oil Free Single Screw Air Compressor for Food Package Medical Devices   with high quality
editor by CX 2023-11-06

China supplier Hw5507 Factory Cheap Price 7bar 4kw Belt Driven Double Head Small Quiet Portable Electric Piston Air Compressor supplier

Product Description

Product Description

1. Patented design, reasonable layout of components, compact structure, large-capacity gas storage tank; advanced surface electrostatic spraying technology.

2. Cast iron crankcase, configure sight oil glasses and fully relieved respirator.
3. The cylinder is made of wear-resistant cast iron material,multi-fin design, ensure the best heat dissipation effect.
4. Connecting rod made of forged aluminum or ductile iron,high strength, don’t easy to deform. The open-type connecting rod is designed with copper bushings at both ends of which are wear-resistant.
5. The high-strength aluminum alloy piston reduces the moment of inertia and improves the stability of the machine body. It adopts 2 oil scraper rings and 2 piston ring designs to ensure low fuel consumption, low backlash and improve compression efficiency.
6. The high-strength wear-resistant crankshaft is equipped with double balance weights and high-precision bearings to ensure the best balance of operation.
7. Adopt high-quality imported reed valve, small air intake resistance, large exhaust volume, and service life will be 10,000
hours.

Product Parameters

Model No HW4007B HW5507 HW7507 HW10007 HW15007 HW20007
Air delivery (m3/min) 0.4 0.55 0.75 1.05 1.55 2.15
Working pressure(Mpa) 0.7 0.7 0.7 0.7 0.7 0.7
Rotation speed(mm) 860 1050 850 850 950 900
Cylinders(mm) 70*3 70*3 100*2 100*3 125*2
110*1
125*2
110*1
Piston stroke(mm) 55 55 72 72 80 110
Tank(L) 120 170 250 320 320 500
Motor power(kw) 3 4 5.5 7.5 11 15
Lubrication Method Splash Splash Splash Splash Splash Splash
Cooling way Air cooled Air cooled Air cooled Air cooled Air cooled Air cooled
Driven method Belt Belt Belt Belt Belt Belt
Weight(KG) 215 225 285 335 487 582
L(mm) 1340 1470 1665 1690 1735 1835
W(mm) 470 470 500 530 585 635
H(mm) 935 980 1090 1260 1350 1460

Detailed Photos

Packaging & Shipping

Certifications

Company Profile

Founded in 1997, our factory has become 1 of the most powerful air compressor equipment and engineering drilling equipment manufacturers in China, and is a member of the national compressor industry association, drilling machinery and pneumatic tools industry association, and a drafting unit of national standards. All the products have passed the quality system certification of ISO9001:2000 and national inspection-free products.
Its total registered capital of 245 million yuan, holding 10 subsidiaries, is a set of technology research and development,
production and manufacturing, sales and service functions in 1 of the modern machinery and equipment manufacturing enterprises, the enterprise covers an area of 31000m2. The group has more than 1100 employees, including more than 100 middle and senior technical personnel. The group has established close cooperative relations with many domestic famous universities and other scientific research institutes, with strong product research and development capabilities.
Now as the main exporter of drilling rigs and air compressors equipment in China. It has exported to more 60 countries such as Southeast Asia, South America, Africa, Eastern Europe, Russia etc. Excellent quality and perfect service gain the consistent praise from customers.

FAQ

Q1. Are you trading company or manufacture ?
A: We are professional manufacture of air compressor and drilling more than 23 years.

Q2. How do you control quality ?
A:1.Raw- material in checking.
2.Assembly.

3.Worldwid after service available.arrange our engineers to help you training and installation.

Q3. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

Q4. How long is the delivery time ?
A: For standard voltage ,10working days. Non-standard ,please contact our sales.

Q5. What’s payment term ?
A: T/T, L/C, Western Union etc. Also we could accept USD, RMB, Euro and other currency.

Q6. How about your warranty?
A: One year for the whole machine, except consumable spare parts.

Q7. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.Worldwid agents and after service avaiable.arrange our engineers to help you training and installation.

Q8: What about product package?
A: We will pack the products strictly with standard seaworthy case.

After-sales Service: 24 Hours Online Service
Warranty: 1year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China supplier Hw5507 Factory Cheap Price 7bar 4kw Belt Driven Double Head Small Quiet Portable Electric Piston Air Compressor   supplier China supplier Hw5507 Factory Cheap Price 7bar 4kw Belt Driven Double Head Small Quiet Portable Electric Piston Air Compressor   supplier
editor by CX 2023-11-03

China wholesaler Mini 12V Inflator Pump Toys Sports Electric Pump Portable Mini Compact Compressor Pump Tyre Air Compressor (48280002) arb air compressor

Product Description

Mini 12V Inflator Pump Toys Sports Electric Pump Portable Mini Compact Compressor Pump Tyre Air Compressor
 

Product Description

Product Descripton

 

Voltage DC 12V
Max. pressure 7kg/cm2
Configure 30mm culinder,4m cord with cigarette lighter(or crocodile clip). 2m ovenproof hose,metal guage.3pcs of nozzle adaptors
Packing color box+foam
Size 17.3*8.5*16.8cm
N.W 2.2KGS
Carton size 46.5*43.5*41cm/8pcs
G.W 20KGS

 

Product Photo

Product Photo


 

Product Advantages

Product Advantages

1)Equipped with pressure checking gauge.                  

2Mini air compressor is a very valuable tool to have on hand.                     

3)It’s ideal for airbeds and inflatable toys, etc.                     

4)It is incredibly versatile and a lifesaver in some instances.             
 

FAQ

Customer Questions & Answers 

 

Q: What’s your MOQ?

A:  Our MOQ is 500 units per model for GTL/OEM brand.

 

Q: What’s your payment terms?

A: We could accept L/C sight, T/T and Paypal.

 

Q: What’s the delivery time?

A: We could deliver the goods within 60 days after order confirmed.

Q: Is the price on this page your final price?

A: The price on this page is only for your reference. We hope you can inquiry the bottom price based on your quantity. We also have promotion season and will give discount for new customer.

 

Q: Can I get free samples?

A:  Yes, we could provide free samples and deliver with freight collected.

 

Company Profile

About Us 

 

Warranty: One Year
Certification: RoHS, CE
Voltage: 12V
Max Pressure: 7kg/Cm2
Configure: 30mm Cylinder
N.W: 2.2kgs
Samples:
US$ 0.00/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China wholesaler Mini 12V Inflator Pump Toys Sports Electric Pump Portable Mini Compact Compressor Pump Tyre Air Compressor (48280002)   arb air compressorChina wholesaler Mini 12V Inflator Pump Toys Sports Electric Pump Portable Mini Compact Compressor Pump Tyre Air Compressor (48280002)   arb air compressor
editor by CX 2023-11-02