Product Description
1. Specification
| Charger Voltage | 100-240V/50-60Hz |
| Rated Voltage | 36V (18×2 Li-ion battery) |
| Max. Pressure | 135 CHINAMFG (8Bar) |
| Max. Air Flow | 98 l/min |
| Product size | 40x35x14 CM (not include battery) |
| Weight | 7.8KG (not include battery) |
| contents | With 2pcs 4.0Ah battery pack, With 1pc 2.3A fast charger |
2. Detailed images
3. Company information
Honesty Makes Perfection, Innovation Makes Success.
TMC Machinery Co., Ltd. was founded in 1999. After more than 20 years of development, TMC has grown into a group company that combines R&D, manufacturing and trading service together, and has become important tool supplier for retailers, importers and CHINAMFG tool brands all around the world.
Now the most important and successful business of TMC is One-Battery-For-All platform. We have been focusing on this lithium battery platform for more than 6 years and have built up a leading range of cordless tools covering power tool, garden tool, bench tool and other categories that share the same batteries and chargers. As of today, we already have more than 260 different assortments in our platform which will keep expanding in near future.
One-Battery-For-All idea is very popular these days because it really brings great convenience and variety to users. They are taking up more and more market share from corded tools or gasoline tools. All the big international brands are working on their own platforms. Our platform already has significant market success in EU nations, Japan, Australia and North America. Many important products including batteries are produced in our own factory (HangZhou Liangming) and the rest from our close partners. Thus we have full confidence and control of the quality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Battery: | Lithium Battery |
|---|---|
| Battery Capacity: | 4.0ah / 5.0ah |
| MOQ: | 500PCS |
| Packing: | Color Box |
| Material: | Metal+PA6/ABS/PP |
| Transport Package: | Customized, Color Box/Carrying Bag/BMC for Option |
| Samples: |
US$ 207.56/Piece
1 Piece(Min.Order) | |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-01-02
China Hot selling Highly CHINAMFG R134A Rotary Compressor Bsa357CV-R1an for Air Condition with Best Sales
Product Description
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
Technical Specification
|
Model |
Displacement |
Cooling capacity (W) |
Cooling capacity (Btu/h) |
COP |
Capacitor (uf/v) |
Height |
|
BSA272CV |
2.72 |
280 |
955 |
2.20 |
4 |
143 |
|
BSA357CV |
3.57 |
365 |
1245 |
2.15 |
4.7 |
143 |
|
BSA418CV |
4.18 |
440 |
1501 |
2.10 |
6.5 |
143 |
|
BSA460CV |
4.60 |
490 |
1672 |
2.28 |
6.5 |
169 |
|
BSA586CV |
5.86 |
640 |
2184 |
2.40 |
8 |
169 |
|
BSA645CV |
6.45 |
692 |
2361 |
2.35 |
6.5 |
169 |
|
SD074CV |
7.40 |
1210 |
4129 |
2.90 |
13 |
205 |
|
SD086CV |
8.60 |
1410 |
4811 |
2.94 |
15 |
205 |
|
SD091CV |
9.10 |
1490 |
5084 |
2.94 |
13 |
205 |
|
SD104CV |
10.40 |
1740 |
5937 |
3.03 |
15 |
232.9 |
|
SD122CV |
12.20 |
2040 |
6960 |
2.96 |
17 |
232.9 |
|
SD145CV |
14.50 |
2480 |
8462 |
3.04 |
20 |
232.9 |
|
SD156CV |
15.60 |
2650 |
9042 |
3.05 |
25 |
232.9 |
Technical Specification for other Series
| inverter compressor | Refrigerant Gas R22 | DC POWER | |||||||||
| Model | cm3/rev | BTU/H | WATTS | Input Power | frequency range | CURRENT | BTU/W/H | W/W | dB(A) | Oil capacity | weight |
| 303DHV-47B2(Y) | 47 | 36490 | 10700 | 3370 | 30~90Hz | 18.5 | 10.9 | 3.2 | 60 | 1.5L | 36Kg |
| 303DHV-47D2(Y) | 47 | 36490 | 10700 | 3350 | 30~90Hz | 8.6 | 10.9 | 3.2 | 60 | 1.5L | 36Kg |
| 403DHV-64D2(Y) | 64 | 48420 | 14200 | 4300 | 30~90Hz | 11.5 | 11.2 | 3.3 | 60 | 1.8L | 36Kg |
| 401DHV-64D2(Y) | 64 | 61380 | 18000 | 5600 | 20~150Hz | 10.5 | 10.9 | 3.2 | 66 | 1.8L | 36Kg |
| 503DHV-80D2(Y) | 80 | 61040 | 17900 | 5300 | 30~90Hz | 15 | 11.6 | 3.4 | 60 | 1.8L | 37Kg |
| inverter compressor | Refrigerant Gas R407 | DC POWER | |||||||||
| Model | cm3/rev | BTU/H | WATTS | Input Power | frequency range | CURRENT | BTU/W/H | W/W | dB(A) | Oil capacity | weight |
| G303DHV-47B2(Y) | 47 | 37510 | 11000 | 3470 | 30~90Hz | 19.1 | 10.9 | 3.2 | 60 | 1.5L | 36Kg |
| G303DHV-47D2(Y) | 47 | 37510 | 11000 | 3450 | 30~90Hz | 8.9 | 10.9 | 3.2 | 60 | 1.5L | 36Kg |
| G403DHV-64D2(Y) | 64 | 49790 | 14600 | 4430 | 30~90Hz | 11.8 | 11.2 | 3.3 | 60 | 1.8L | 36Kg |
| G401DHV-64D2(Y) | 64 | 63220 | 18540 | 5770 | 20~150Hz | 10.8 | 10.9 | 3.2 | 66 | 1.8L | 36Kg |
| G503DHV-80D2(Y) | 80 | 62740 | 18400 | 5460 | 30~90Hz | 15.5 | 11.6 | 3.4 | 60 | ||
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
Refrigerator Compressor
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
Refrigeration Compressors Scope
We are specialized in refrigeration compressors, including rotary, scroll, piston, screw, hermetic, and semi-hermetic all kinds of brands refrigeration compressors.
1.Rotary compressor:Toshiba,Panasonic, CHINAMFG LG
2.Scroll compressor:Copeland,Dan-foss performer,hitachi,Sanyo
3.Piston hermetic compressor:Tecumseh CHINAMFG MT,NTZ,MTZ series.
4.Semi-hermetic Reciprocating Compressor:Copeland,Bit-zer,Carrier
5.Screw compressor :Bit-zer ,Hitachi
Brand Range
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
Workshop
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
FAQ
1. What is the price of a refrigeration compressor?
The price is decided by Quantity.
2. How about samples?
Sample Lead Time: 5 working days
Sample Fee:
1). It’s free for all for a regular customer
2). For new customers, we will charge first, it is fully refundable when the order is confirmed.
3. How many days for shipping?
Shipping Methods and Lead Time:
By Express: 3-5 working days to your door (DHL, UPS, TNT, FedEx…)
By Air: 5-8 working days to your airport
By Sea: Pls advise your port of destination, the exact days will be confirmed by our forwarders, and the following lead time is for your reference. Europe and America (25 – 35 days), Asia (3-7 days), Australia ( 16-23 days)
4. What are the Terms of Payment?
Credit Card, T/T, L/C, Western Union; 30% T/T in advance, 70% before delivery.
5. Packaging & Shipping?
Pallet, wooden case or with outer carton, or as customers’ specific requirements.
6. Why choose your company?
We are focusing on all aspects of refrigeration compressor, high quality, and nice prices.
We strictly implement the rules according to the quality standard in every aspect from the purchase of raw material to the production process and outgoing of products.
Great service and Superior quality is provided all the time…
Packaging & Shipping Packing: Carton, wooden box, and pallet, or as customers’ requirements.
Shipping: By Express (DHL /UPS /TNT /FedEx /EMS), By Air, By Sea
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition
Packaging and shipping
HVAC&R Exhibition
Highly CHINAMFG R134a Rotary Compressor BSA357CV-R1AN for Air Condition /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 6 Months |
| Installation Type: | Stationary Type |
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| HP: | 1HP |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-12-29
China Hot selling 50HP/37kw 30% Energy Saving Industrial Permanent Magnet Motor VSD Electric Screw Air Compressor 12v air compressor
Product Description
DM Series Permanent Magnet Variable Frequency Screw Compressor
Characteristics of permanent magnet frequency conversion air compressor
Ultra-low temperature rise design, the compressor allows long-term stable operation at ultra-low frequency, adopts closed-loop vector control system, faster control, more precise speed regulation, when the frequency is reduced by more than 50%, the compressor unit can still maintain high-efficiency operation, stable pressure, and precise pressure control Fluctuation within 0.01MPA.
The figure shows the comparison of several start-up methods. It can be seen that the inverter starts slowly and accelerates, which is more stable and completely avoids the current peak.
Under the set frequency conversion pressure, the unit will automatically adjust to keep the output pressure within ±0.1bar, reducing unnecessary waste. (For every 1 bar increase in pressure, power consumption increases by 7%)
Product feature
Super Premium Efficiency PM Motor (IE4 equivalent) Oil-cooled motor.
- Fully enclosed IP65 protection.
- Reach lE4 efficiency standard.
- VSD: variable speed drive.
- Optimal cooling for all speeds and ambient conditions.
- Bearing free motor requires zero maintenance.
- UH series Permanent magnets resist to 180°C
- F grade insulation and B grade temperature rise assessment.
- High temperature design prevents demagnetization.
New compressor airend
1. New improved rotor profile
2. R&D in Germany
3. Designed to give many years of reliable operation
Inlet filter
- Nano scale Heavy duty
- Filtration accuracy upto 99.9%
- Dust particles below 0.3 micron
- Pressure drop indicator
VSD fan
- VSD control
- Compact
- Low noise level
- High capacity for optimized cooling
- Low power consumption
Classic cooler design
- Easy access for maintenance
- Paint anti-corrosion coating on surface
- 30% oversized cooler design
Innovative flux vector inverter
- Wide voltage design
- Meets C3 and C3 EMC requirements
- Built-in DC reactor
- Independent cooling air duct design
Touch PLC
- 7.0 inch full color touch screen
- Real-time operation/ maintenance/ alarm information
- Full graphical flow diagram
- Operation record/ chart display
- Multiple languages
- Weekly and daily scheduling, service history and plHangZhou
- On board RS485 interface
Inlet valve
- Optimizes the inlet flow of the air end
- No blow down losses
- Full aluminum maintenance free design
- Fast check: prevent unloading and shut-
- down oil injection
Oil filter
- High efficiency oil filter removes contaminants from the oil
- Oil particles can be controlled at 0.1 micron
- Ensures a smooth and well-lubricated oil system
Oil tank
- Oversized air and oil tank improves the cyclone effect maximising the separation process
- The high efficiency oil separator ensures that the oil carry over is less than 3ppm
- System pressure loss is less than 0.02mpa
All-steel internal pipe system
- All steel internal pipe work and compression joints are used to prevents leakage and premature ageing often seen with flexible pipes
- Less pipe friction loss
Product parameter
| Model No. | Power | Max. | Capacity | Cooling | Driven | Starting | Weight(Kg) | Air | Dimension (mm) |
| (kw/hp) | Pressure | (m3/min) | Method | System | Outlet | ||||
| DM-10A | 7.5/10 | 8 bar | 1.2 | Oil | Direct | Frequency | 190 | G3/4″ | 895*590*970 |
| DM-20A | 15/20 | 7bar | 2.4 | 236 | G3/4″ | 1062*690*1000 | |||
| 8 bar | 2.3 | ||||||||
| 10 bar | 2.2 | ||||||||
| DM-30A | 22/30 | 7bar | 4.1 | 370 | G1″ | 1330*830*1265 | |||
| 8 bar | 3.6 | ||||||||
| 10 bar | 3.2 | ||||||||
| DM-40A | 30/40 | 7bar | 5.7 | 450 | G1″ | 1330*830*1265 | |||
| 8 bar | 5.2 | ||||||||
| 10 bar | / | ||||||||
| DM-50A | 37/50 | 8 bar | 6.5 | 655 | G1 1/2″ | 1500*940*1415 | |||
| 10 bar | 5.6 | ||||||||
| 13 bar | 4.9 | ||||||||
| DM-60A | 45/60 | 7 bar | 8.1 | 730 | G1 1/2″ | 1500*940*1415 | |||
| 8 bar | 7.5 | ||||||||
| 13bar | 5.9 | ||||||||
| DM-75A | 55/75 | 7 bar | 10.3 | 1050 | G2″ | 1600*1060*1470 | |||
| 8 bar | 9.5 | ||||||||
| 13 bar | 7.8 | ||||||||
| DM-100A | 75/100 | 7 bar | 13 | Air | 1291 | G2″ | 2000*1120*1590 | ||
| 8 bar | 12.8 | ||||||||
| 10 bar | 11 | ||||||||
| 13 bar | 9.5 | ||||||||
| DM-125A | 90/125 | 7 bar | 16.33 | 1421 | G2″ | 2000*1120*1590 | |||
| 8 bar | 13.65 | ||||||||
| 10 bar | 14 | ||||||||
| 13 bar | 12.5 | ||||||||
| DM-150A | 110/150 | 7 bar | 20.8 | 1970 | DN65 | 2400*1630*1980 | |||
| 8 bar | 19.6 | ||||||||
| 10 bar | 17.8 | ||||||||
| 13 bar | 15.5 | ||||||||
| DM-175A | 132/175 | 7 bar | 24.1 | 2120 | DN65 | 2400*1630*1980 | |||
| 8 bar | 23.2 | ||||||||
| 10 bar | 19.5 | ||||||||
| 13 bar | 17 | ||||||||
| DM-220A | 160/220 | 7 bar | 28.5 | 2650 | DN80 | 2600*1700*1980 | |||
| 8 bar | 27.5 | ||||||||
| 10 bar | 23 | ||||||||
| 13 bar | 20 | ||||||||
| DM-250A | 185/250 | 7 bar | 33.2 | 2850 | DN80 | 2600*1700*1980 | |||
| 8 bar | 31.2 | ||||||||
| 10 bar | 27.5 | ||||||||
| 13 bar | 25.8 | ||||||||
| Motor Efficiency Class: Ultraefficient/IE3/IE2 as per your required Motor Protection Class: IP23/IP54/IP55 or as per your required Certification: CE/ISO9001/TUV/UL/SGS/ASME Voltage: 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, dual voltage is also ok |
|||||||||
1.DHH Permanent Magnet VSD Screw Compressor Energy-saving technology makes it an indispensable part in your factory.
Features
Motor Power:7.5~55(Kw)
Air Delivery: 0.7~10.3(m3/min)
Working Pressure:7.0~13.0(Bar)
Cooling Method: Oil cooling
Motor protection class: IP65
High-efficiency, One-piece structure
Motor Power:75~185(Kw)
Air Delivery:13~33.2(m3/min)
Working Pressure:7.0~13.0(Bar)
Cooling Method: Ail cooling
Motor protection class: IP54
High-efficiency, Significant Energy saving
Certificate
Project case
Shipping and packaging
Customer feedback
About us
Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineers’ teams.We focus on the research & develop, manufacture and energy-saving solutions of screw air compressor to create value for customers and society.
Dehaha opened to the world since 2015, and now we have a foreign trade department with more than dozens people, serving customers around the world 24 hours. We have sales representatives who can speak English, Spanish, Portuguese, French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.now our valued customers are over 130 countries. Germany Standard and 13 years exporting experience help us won more than 50 loyal overseas agents.
Dehaha continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle “Energy Saving First, Mutual Value Shared”. The production line of CHINAMFG is consist of screw air compressor from 5.5KW to 550KW, oil free air compressor, portable air compressor, permanent magnet variable frequency air compressor, high pressure air compressor and compressed air purification equipment, etc.
Dehaha mission is to be a world-renowned high-end brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff. Committed to offer our customers a silent and energy-saving manufactured products.
Our services
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in DEHAHA air compressor factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang and all distributors’depots.
6.All kinds of technical documents in different languages.
Why choose us
FAQ
1.Why customer choose us?
DEHAHA COMPRESSOR ZheJiang CO.,LTD.with 24 years old history,we are specialized in Rotary Screw Air Compressor.Germany Standard and 13 years exporting experience help us won more than 30 loyal foreign agents.We warmly welcome your small trial order for quality or market test.
2.Are you a manufacturer or trading company?
We are professional manufacturer with big modern factory in HangZhou,China,with professional design team.Both OEM & ODM service can be accepted.
3.Where is your factory located? How can I visit there?
Our factory is located in HangZhou City, ZheJiang Province, China. We can pick up you from ZheJiang , it’s about 1 hour from ZheJiang Xihu (West Lake) Dis. Airport to our factory. Warmly welcome to visit us!
4.What’s your delivery time?
380V 50HZ we can delivery the goods within 14 days. Other electricity or other color we will delivery within 22 days,if urgently order,pls contact our sales in advance.
5.How long is your air compressor warranty?
One year for the whole machine and 2 years for screw air end, except consumable spare parts and we can provide some spare parts of the machines.
6.How does your factory do regarding quality control?
Quality is everything. we always attach great importance to quality controlling from the very beginning to the very end. Our factory has gained ISO9001:2015 authentication and CE certificate.
7.How long could your air compressor be used?
Generally, more than 10 years.
8. What’s payment term?
T/T,L/C,D/P,Western Union,Paypal,Credit Card,and etc.Also we could accept USD, RMB, Euro and other currency.
9.How about your customer service?
24 hours on-line service available.48 hours problem solved promise.
10.How about your after-sales service?
(1) Provide customers with installation and commissioning online instructions.
(2) Well-trained engineers available to overseas service.
(3) CHINAMFG agents and after service available.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24months |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-12-22
China Standard Oil-Free High Pressure Air Compressor with Hot selling
Product Description
Product Description:
Portable dental oil free electric air compressor
Technical Parameters:
|
Voltage |
110V/220V |
Frequency |
AC 60Hz/50Hz |
|
Ampere |
3.8A |
Power |
850W |
|
Volume Flow |
81L/min |
Rated exhaust pressure |
0.8Mpa |
|
Noise |
56-65db |
Tank Capacity |
30L |
|
Gross Weight |
45kg |
Product Size |
52*52*65cm |
Advantage:
Silent:
Low working noise, create a quiet working environment.
Low vibration:
With special rubber feet, reduce vibration during operation.
Core technology:
Diamond hardness cylinder ensure durable working performance.
Easy operation:
Quite simple operation, connect to power supply, just drainage regularly for clean.
Packing & Delivery(100% calibration before shipment)
OUR MISSION & VISSION:
MISSION: We will make every effort to deliver superior value to customers with simple, innovation and quality products
VISSION: Quality working environment, quality products, close services for the betterment of dentistry CHINAMFG
We’d like to make friends with colleagues from all circles with fine quality products,
favorable prices and perfect services and create a beautiful future of the national dentistry industry! ! !
FAQ
Q1:Are you a company or factory?
Yes,we are a dental equipment manufacturer in HangZhou,China.
Q2:What ‘s your advantage?
KJ Dental founded in 2008,professional dental chair & dental chair spare parts manufacturer. Providing good after-sale service and competitive price.
Q3:What is your warranty?
Have 1 year warranty.If having any problems,you can send us photos,we will give you the spare parts for free.
Q4:How about the delivery days?
It depends on the quantity and model you order. Normally,2-3days.
Q5:What certificates do CHINAMFG have?
We have the ISO 13485:2003, EN ISO13485:2012,our product got the CE certificated. We also have different kinds of certificates and documents to meet with different foreign countries.For more information,pls contact us.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Teeth Whitening Method: | Laser Whitening |
|---|---|
| Applicable Departments: | Orthodontic Department |
| Certification: | ISO, CE |
| Type: | Dental Auxiliary Materials |
| Material: | Metal |
| HS Code: | 90184990 |
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-12-18
China supplier Hot Sell 185cfm 5m3/Min Diesel Screw Air Compressor air compressor parts
Product Description
| Model | MDS185-7P | |||||||||
| Compressor | Air delivery |
m3/min | 5.18 | |||||||
| cu.ft/min | 185 | |||||||||
| Discharge pressure | bar | 7 | ||||||||
| psig | 101.5 | |||||||||
| Lubricating Oil capacity | L | 23 | ||||||||
| Diesel Engine |
Manufacture&Model | Perkins 4O4D-22 | ||||||||
| Cylinder Number | 4 | |||||||||
| Displacement(L) | 2.7 | |||||||||
| Rotation speed(Rmp) | Operating | 2500 | ||||||||
| Idle speed(r/min) | 1800 | |||||||||
| Rated power(KW) | 42 | |||||||||
| Lubricating Oil capacity(L) | 7 | |||||||||
| Coolant Capacity(L) | 9 | |||||||||
| Battery | 6-QW-80 | |||||||||
| Others | Dimension | L(mm) | 3050 | |||||||
| W(mm) | 1740 | |||||||||
| H(mm) | 1660 | |||||||||
| Weight(kg) | 1400 | |||||||||
| Standard Configuration |
. Suction valve Lubricating oil filter Oil thermostatic valve 50°C radiator
Solenoid valve Vertical air/oil tank Pressure regular valve Air/oil separator
Lubricating oil radiator Safety valve Emergency stop button Air filter of engine
Minimum pressure valve Lockable battery isolator switch
Air filter of compressor Vent valve Powder coated canopy Shuttle valve
24V sealed for life maintenance free battery Fuel tank for 8 hours running
| General Features |
| Structure diagram |
1.Exhaust Outlet 2. Lifting bail 3. Door 4.Handle
5.Service Valve 6. Instrument panel 7.Radiator filler 8. Oil drain
| Feature&Benefit | ||||||||||
| Feature | Benefit | |||||||||
| Pressure selection and control | Easy pressure setting | |||||||||
| Flow selection and control | The working pressure and airflow rate can be adjusted according to the size of air consumption without wasting any diesel | |||||||||
| The twin-screw rotor is directly connected with the diesel engine by a highly flexible coupling | Outputting more air with less energy consumption, featuring high reliability, longer service life, and low maintenance cost. | |||||||||
| The two-stage air filtration system | The total efficiency of air filtration reaches 99.8% ensuring the compressor to not be infringed by dust and dirt particles and longer service life of the engine | |||||||||
| High-temperature resistance design | Able to run for a long time under extreme cold or hot temperature from -20ºC to 50ºC | |||||||||
| One-button start, clear operational parameters | Operators don’t have to go through long-term professional training, and unattended operations can be achieved. | |||||||||
| Application areas |
| Application | Nominal Working Pressure(bar) | Free Air Delivery Range(m3/min) | ||||||||
| General Construction (building sites, road maintenance, bridges, tunnels, concrete pumping and shotcreting) |
Hand-held pneumatic breakers | 7~14 | 5~13 | |||||||
| Jack hammers | ||||||||||
| Air guns | ||||||||||
| Shotcrete equipment | ||||||||||
| Pneumatic wrenches | ||||||||||
| Nut runners | ||||||||||
| Ground Engineering Drilling (basement and foundation excavation for apartment blocks and other buildings) |
Pneumatic rock drills | 7~17 | 12~28 | |||||||
| Block cutters | ||||||||||
| Dewatering pumps. | ||||||||||
| Hand-held pneumatic breakers | ||||||||||
| Utility, CHINAMFG Blasting (shipyards, steel construction and large renovation jobs) |
Sandblasting (remove rust, scale, paint) |
7~10 | 10~22 | |||||||
| Blast Hole Drilling (aggregate production for construction stabilization, cement production in limestone quarries and open pit mining) |
Rock drills | 14~21 | 12~29 | |||||||
| Dewatering pumps | ||||||||||
| Hand-held breakers | ||||||||||
| High Pressure Drilling (drilling for water wells and foundations for high-rise buildings, along with geotechnical/geothermal applications) |
Water well drilling | 20~35 | 18~40 | |||||||
| DTH drilling | ||||||||||
| Rotary drilling | ||||||||||
| Selection table |
| Small Series | ||||||||||
| Small Series | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS55S-7 | 1.55 | 55 | 7 | 101.5 | D902 | 2925 | 1650 | 1200 | 1200 | 600 |
| MDS80S-7 | 2.24 | 80 | 7 | 101.5 | D1005 | 2925 | 1650 | 1200 | 1200 | 630 |
| MDS100S-7 | 2.8 | 100 | 7 | 101.5 | V1505 | 2925 | 1650 | 1200 | 1200 | 640 |
| MDS125S-7 | 3.5 | 125 | 7 | 101.5 | V1505 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS130S-8 | 3.7 | 132 | 8 | 116 | JE493 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS185S-7 | 5.18 | 185 | 7 | 101.5 | JE493 | 3200 | 1900 | 1740 | 1660 | 950 |
| MDS185S-10 | 5.18 | 185 | 10 | 145 | JE493 | 3050 | 1900 | 1740 | 1660 | 950 |
| Middle Series (Low&Medium pressure) | ||||||||||
| Middle Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS265S-7 | 7.42 | 265 | 7 | 101.5 | JE493 | 3629 | 2200 | 1700 | 1470 | 1200 |
| MDS300S-14 | 8.4 | 300 | 14 | 203 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS350S-10 | 9.9 | 354 | 10 | 145 | 4BT3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-7 | 11 | 393 | 7 | 101.5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-13 | 11 | 393 | 13 | 188.5 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS429S-7 | 12 | 429 | 7 | 101.5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS429S-14 | 12 | 429 | 14 | 203 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS500S-14 | 14.1 | 504 | 14 | 203 | 6BTAA5.9 | 4550 | 3600 | 1810 | 2378 | 3100 |
| MDS690S-14 | 19.3 | 689 | 14 | 203 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS720S-10 | 20.2 | 721 | 10 | 145 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS750S-12 | 21 | 750 | 12 | 174 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS786S-10.3 | 22 | 786 | 10.3 | 149.35 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS820S-14 | 23 | 821 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS850S-8.6 | 24 | 857 | 8.6 | 124.7 | 6CTAA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| MDS900S-7.1 | 25.3 | 904 | 7.1 | 102.95 | 6CTA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| Middle Series (Medium&High pressure) | ||||||||||
| Middle Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS460S-17 | 13 | 464 | 17 | 246.5 | 6BTAA5.9 | 4600 | 3500 | 1800 | 2230 | 3500 |
| MDS620S-17 | 17.4 | 621 | 17 | 246.5 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS650S-19 | 18.2 | 650 | 19 | 275.5 | QSL8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS690S-20.4 | 19.4 | 693 | 20.4 | 295.8 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS770S-21 | 21.6 | 771 | 21 | 304.5 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS830S-18 | 23.2 | 830 | 18 | 261 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS820S-25 | 23 | 821 | 25 | 362.5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| MDS860S-20.4/17.3 | 24.2 | 864 | 20.4 | 295.8 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 24.2 | 864 | 17.3 | 250.85 | |||||||
| MDS875S-23 | 24.5 | 875 | 23 | 333.5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| Large Series (Low&Medium pressure) | ||||||||||
| Large Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-14.2/10.5 | 25.1 | 896 | 14.2 | 205.9 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 25.2 | 900 | 10.5 | 152.25 | |||||||
| MDS910S-14 | 25.6 | 914 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS970S-10 | 27.2 | 971 | 10 | 145 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1011S-8.6 | 28.3 | 1011 | 8.6 | 124.7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1054S-12 | 29.5 | 1054 | 12 | 174 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1250S-8.6 | 35 | 1250 | 8.6 | 124.7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1400S-13 | 40 | 1400 | 13 | 188.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1600S-10.3 | 45 | 1600 | 10.3 | 149.35 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1785S-13 | 50 | 1785 | 13 | 188.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS2140S-10 | 60 | 2142 | 10 | 145 | QSZ14 | 7400 | 5400 | 2230 | 2630 | 8400 |
| Large Series (Medium&High pressure) | ||||||||||
| Large Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-20 | 25.3 | 904 | 20 | 290 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS960S-18 | 26.9 | 961 | 18 | 261 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS1000S-35 | 28.2 | 1000 | 35 | 507.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1089S-25 | 30.5 | 1089 | 25 | 362.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1200S-24 | 33.6 | 1200 | 24 | 348 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-21 | 35 | 1250 | 21 | 304.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-25 | 35 | 1250 | 25 | 362.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-30 | 35 | 1250 | 30 | 435 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-35 | 35 | 1250 | 35 | 507.5 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-40 | 35 | 1250 | 40 | 580 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1428S-18 | 40 | 1428 | 18 | 261 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1428S-35 | 40 | 1428 | 35 | 507.5 | TAD1643VE-B | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1428S-40 | 40 | 1428 | 40 | 580 | QSK19 | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1600S-25 | 44.8 | 1600 | 25 | 362.5 | WP17G770E302 | 7400 | 5500 | 2180 | 2650 | 10000 |
| GTL Air compressor test system |
| After-sales Service: | Online |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-12
China supplier Factory Price SCR20xa Oil-Free Scroll Air Compressor with Hot selling
Product Description
Product Technical Description
| Product Name | Factory Price SCR20XA Oil-Free Scroll Air Compressor |
| Model : | Scroll Oil Free Series (XA) |
| Type: | Scroll Oil Free Screw Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 8~10bar |
| Installed Motor Power: | 11~30 Kw |
| Color: | Blue |
| Driven Method: | Belt Driven |
| Trademark: | SCR |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Dentistry,Laboratory,New Energy |
Product Features
1.High quanlity oild free compressed air.
2.High efficiency oil free scroll airend.
3.Low Energy Consumption,Low running,maintenance cost.
4.Aptitude and intelligent Control, integrated touch-screen PLC displayer.
5.Unique safe units make whole compressor more safety, more stable,lest noise,lest energy Loss.
6.Easy to install,operate,maintain.
High quality oil fee compressed air:
A high quality 74 Degree taper connection is used making a more reliable seal reducing the risk of air leakage. SCR’s oil free scroll machine provides 100% oil free air and makes use of fully stainless steel pipework eliminating any possible contamination.
High Efficiency oil free scroll airend:
SCR use a world-renowned scroll airend in the XA range for enhanced reliability. The compression chamber and lubricant system is 100% separated meaning there is no risk of oil contaminated air.
High Reliability:
The XA range use low noise, high pressure centrifugal fans which provides excellent air flow. The oversized cooler has spare capacity of between 20%-30% making the air outlet temperature only +10-15 degrees above the ambient tempera-ture. This reduces the burden of downstream equipment.
| SCR Oil Free Scroll Compressor | ||||
| Model | SCR15XA-8/10 | SCR20XA-8/10 | SCR30XA-8/10 | SCR40XA-8/10 |
| Exhausting Capacity | 1.2/1.0 | 1.6/1.4 | 2.6/2.1 | 3.5/2.8 |
| (m³/min) | ||||
| Power (KW) | 11 | 15 | 22 | 30 |
| Horse Power (HP) | 15 | 20 | 30 | 40 |
| Drive Method | Belt Driven | |||
| Discharge Temperature ºC | Ambient+15ºC | |||
| Noise db(A) | 65 | 68 | 70 | 72 |
| Power Supply | 380(400,415)V/50Hz/3Phase,220V/60Hz/3P | |||
| Size mm | 1350*1200*800 | 800*1200*1800 | 1200*1400*1500 | 1200*1400*1800 |
| Weight Kg | 450 | 650 | 900 | 1300 |
| Air Outlet Size | Rc1 | Rc1 | Rc1 | Rc1 |
Product Categories
Advantages
Application
About SCR
FAQ
|
1 What trade terms do we provide? What kind of settlement currency do we offer? |
|
Trade term :CIF ,CFR ,FOB,Ex-Works |
|
2 How long is our delivery? |
|
Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case. |
|
3 What is the voltage of the compressor? |
|
The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage according to customer requirement. |
|
4 Can our compressor run in high temperature environment? What is the working temperature range for our machine? |
|
Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. |
|
5 What’s the min. Order requirement ? |
|
Min. Order requirement is 1PCS. |
Contact us
Company Name: ZheJiang CHINAMFG Co., Ltd
Contact Person: Vincent Sun
If you are interested in any of our products,please feel free to contact us.We are looking CHINAMFG to cooperating,growing and developing with your sincerely.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-12-07
China Hot selling Five Stage Oil Free Lubrication Water Cooling Piston Air Compressor with Best Sales
Product Description
Five Stage Oil Free Lubrication Water Cooling Piston Air Compressor
Compressor specification:
Type: Vertical, three-rank, five-stage, oil-free lubrication, water-cooling and piston
Exhaust capacity: 200 M3/h (according to suction state)
Medium : Dry oxygen
Inlet Temperature: <40ºC
Max Working Pressure: 16.5 MPa(165kgf/cm2)
Piston travel: 180 mm
Consumption of cooling water: 6T/hr
Revolution of compressor: 232r.p.m
Revolution of electric motor: 960 r.p.m
Power of electric motor: 55KW
Matching motor: 380V (three phase) 50Hz
Product Pictures:
Goods Package:
Contact:
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Structure Type: | Semi-Closed Type |
| Compress Level: | Multistage |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-07
China Hot selling Inquiry About CHINAMFG 100L Air Compressor air compressor lowes
Product Description
HangZhou CHINAMFG is a company that combines the development, manufacturing, and marketing of gasoline generators,
diesel generators, water pumps, air compressors.Factory possess advanced production testing equipment and a modern
quality management system, and have always implemented comprehensive quality control through strict adherence to
ISO9001 standards. Furthermore, our products have also passed GE, CE, EMC certification.
FEATURE:
1.The start power of air compressor is a qualified gasoline engine, insuring fuel buring effectively and economically
2.Adopting several reliable measures for shock protection, with a small shcok of the whole sets.
3.With a whole closed structure set, adopting light materials, small cubage and light weight.
DESCRIPTION:
| Power(Kw/HP) | 3/4HP |
| Speed(r.m.p) | 1100 |
| Displacement(L/min) | 525 |
| Tank | 70 |
| Pressure(p.s.i/Mpa) | 115/0.8 |
| Meas | 116*48*84 |
F A Q:
1Q:Are you a factory or trading company?
A: We are a factory.
2Q:Where is your factory located?
A: Our factory is located in Xihu (West Lake) Dis. industry,HangZhou city, ZHangZhoug Province, China.
It’s near HangZhou port.
3Q:Can you accept OEM?
A:Yes, we can accept OEM.
4Q:What’s your delivery time?
A:Normally 30 days for container order.
5Q:How about quality control in your factory?
A: Our QC Department take the strictly quality control for every spare parts and whole machine.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Series Arrangement |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
| Compress Level: | Single-Stage |
| Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-12-06
China Hot selling 15HP 30HP 50HP CE Oil Free Silent Stainless Water Tank Oilless Screw Air Compressor 380V High Efficiency Air Compressors portable air compressor
Product Description
Specification
| Product name | Compressor Screw |
| Applicative gases | Compressed air / non-corrosive air |
| Inlet air flow | Std.3.8 Nm3 /Min |228Nm3 /Hr |
| Inlet air pressure | Std.7 bar | Min 6 bar Max:10 bar |
| Inlet air temperature | Std.50 ºC | Max:80ºC |
| Working environment temperature | Std.32 ºC |Min 2ºC Max:45ºC |
| Outlet air dew point | +2ºC~10ºC |
Product Description
Details
Q: Are you a factory or a trading company?
A: We are factory. And we have ourselves trading company.
Q: What is the specific address of your company?
A: No.3, 2nd Street, yuanle Road, Xihu (West Lake) Dis.sheng Town, HangZhou City, ZheJiang Province, China
Q: Do your company accept ODM & OEM?
A: Yes, of course. We accept full ODM & OEM.
Q: What about the voltage of products? Can they be customized?
A: Yes, of course. The voltage can be customized according to your requirement.
Q: Do your company offer spare parts of the machines?
A: Yes, of course, high quality spare parts are available in our factory.
Q: What are your payment terms?
A: 50% T/T in advance, 50% T/T before delivery.
Q: What payment ways do you accept?
A: T/T, Western Union
Q: How long will you take to arrange the goods?
A: For normal voltages,we can delivery the goods within 7-15 days. For other electricity or other customized machines, we
will delivery within 25-30 days.
| After-sales Service: | Accept |
|---|---|
| Warranty: | Accept |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Samples: |
US$ 688/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-12-06
China Hot selling High Quality Suspension System Car Air Compressor Pump for CHINAMFG Auto Car Parts air compressor oil
Product Description
Air Suspension Compressor Atuo Spare Parts Valve Block For CHINAMFG X351 AW933B484AF
1. OE quality and CHINAMFG price Company Profile HangZhou Xihu (West Lake) Dis. Xihu (West Lake) Dis. Auto Parts Manufacturing Co., Ltd.,The company mainly engaged inautomotive chassis components, engine accessories,spray series products. The company provide design, research and development,production, sales, for the domestic and foreign automotive assembly plant and the global after-sales market to provide high quality automotive parts. The company now provides supporting services for Mercedes Benz,Audi,BMW,Volkswagen,Por-sche,Land Rover,Bentley,Jaguaretc. Through brand positioning, the company provides high-quality original parts and cost-effective post-market brand parts for the global automotive sector.Now, it has set up agents and distributors in more than 35 countries around the world,XIHU (WEST LAKE) DIS. brand is the first batch of manufacturers approved by the Chinese ministry of commerce tomeet the export requirements.The company through the stable quality, the reliable prestigeand the customer first principle obtains the customer’s support.
What We Do FAQ Re: Our Trade Office In Xihu (West Lake) Dis. District ,HangZhou; Our Factory Located At Xihu (West Lake) Dis. District HangZhou City. We Warmly Welcome You To Visit With Us Anytime, More Details & Info Please Contact Us About Us XIHU (WEST LAKE) DIS. Brand, is a leading profeesional air suspension and chassis auto part company which specializing in developing, producing and exporting air suspension strut, air spring, air compressor, suspension repair parts, rubber sleeve, aluminum cover, power steering rack and so on. Our products can be installed in cars, trucks, trails, buses, and also compoatible with passenger cars and industrial products. We can provide more than 10,000 kind of products which fit for Mercedes-Benz, Audi, BMW, Land Rover, Porsch,etc. We always offer high quality products and best service so that we not only have a very large market percnetage in domestic maket but also keeping a steady growth in the global market. We export to North America, Europe, Middle East, Africa and Southest Asia, which included 90 countires and regions. Company Culture: Company philosophy: take it from the society and serve the society Service: 1.Quality Warranty: according to the clients’ request, we could guarantee fron 12 month to 24 months. Advantage 1. we are top 3 of professional air suspension manufacturer in China. OEM/ODM Service: – If you want to show your own brand LOGO on the goods such as cable, package bag, label or any where. Our OEM and ODM service is always ready to do it. Please contact with our sales team to get best support. Packing: Shipping:
| Order Sample | .shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc} Estimated freight per unit. Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them: 1. Mobility: The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications. 2. Power Source: Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity. 3. Tank Capacity: Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications. 4. Performance and Output: The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment. 5. Noise Level: Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability. 6. Price and Cost: Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs. When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use. Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality: 1. Air Filtration: Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness. 2. Moisture Control: Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness. 3. Oil Removal: If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal. 4. Regular Maintenance: Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers. 5. Air Receiver Tank Maintenance: Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system. 6. Air Quality Testing: Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards. 7. Education and Training: Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes. 8. Documentation and Record-Keeping: Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes. By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air. An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates: 1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use. 2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air. 3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand. 4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level. 5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems. 6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply. Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation. In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.
2. Fatigue Testing more than 6,054, A230325713 230325718 230325718 230325713
W251
A25132571 251320571 251320571 251325713 25132 164325713 16432
W220(4 Matic)
AA2203257138
W220
2203205013
W221(4 Matic)
A221320571 A221320571
W221
A22132 0571 3 A221325713
W211
AA211325713 211325713 211325718 211325718 21132 0571 3 21132 0571 8 21132 0571 3
Air Suspension Shock Absorber
F02
37126791676
E66(with ADS)
37126785536
E65 E66
37126785538
E53 X5
37116761444
Air Shock Absorber
L322
RNB40E 3D0616 970343571 970343 0571 4
Company purpose: people-oriented, customer first, integrity first! Company philosophy:mutual benefit and common developmentl Company direction: develop quality products,adhere to the brand strategy.Trust and integrity are the cornerstones of our long-lastingrelationships and is essential in fostering loyalty and teamwork. We care about our people,our customers,suppliers and communities and about creating a sustainable future together.
We develop and source great consumer products that consumers love to buy. We outperform our competition by bringing products to market faster and at higher value for our customers.Our unique production and sourcing process enables us to work very differently than buyingoffices and traditional trading companies, giving more responsibility and freedom to ouremployees.
1. Are You Manufacturer Or Trading Company?
Re: We Are Both Specialize In Auto Parts ( Air Suspension) Manufacturer & Trading Company.
2. What’s The MOQ?
Re: The MOQ With Our Standard Products Is 1 Piece.
3. What’s Your Mainly Products?
Re: We Supply Air Suspension Spring, Shock Absorber, Pressure Shocks, Air Pump etc.
4. What’s Your Policy On Warranty?
Re: We Provide 12 Months For New Suspension Parts Products For Our Customers.
5. Where Is Your Company?
6. What Are Your Payment Methods?
Re: We Accept T/T, Paypal, Western Union, Money Gram, Alipay. Due To Difference Payment In Difference Countries Or Regions.
7. What’s Your Packing Way?
Re: Neutral Packing, Standard Packing, Accept Customers’ Special Required.
8. How Do You Usually Ship The Goods And When?
Re: Normally, We Will Ship The Goods In 3-7 Days After Payment Verified And Goods Confirmed, And Ship The Goods Via The (HuangPu) Ports In GuangZhou.
9. If You Offer The Free Sample?
Re: We Accept MOQ 1 Piece Order, But Do Not Offer The Free Sample To Our Customers.
Development philosophy: dedicated to air spring technology research, build international top air suspension products
Company spirit: honesty, innovation, harmony and CHINAMFG development
2.Delivery time: within 7 days after getting your payments. Regarding the big orders, it need about 15-30 days.
according to our stocck and product task.
3.Quick response: We will reply to our clients within 24 hour and try our best to meet the clients request.
4.Good Service: Be Honest Forever.However you buy 1 pcs order or you buy more than 1000 pcs, we will sincerely reply to every client.
2. our factory has 120 staff, and we only produce 100% newly air suspension products for 10 years.
3. we have cooperated with 80 overseas companies with stable relationships. many are also brands or big sellers at Amazon or EBAY websites.
4. we have our own cars to test our products,except normal test machine and IATF16949:2016 certificate standard.
5. we have complete production line, Mercedes Benz,BMW Audi,Porsches,Land Rover,Volkswagen-these are our products,we has complete products line.
6. Our air suspension/air compressor/air strut/air suspension parts 100% NEWLY manufactured to instead OEM
7. We manufacture air suspension/air strut/air compressor to instead OEM ;
8. Constant temperature workshop for core parts;
9. Japan automatic welding machine to weld
– According to Standard Export Packing.
– Carton box, wooden box, wooden pallet.
– International express such as UPS, TNT, DHL, etc
– International air: CA, AA, EA, etc
– By sea
– Standard export sea port: Xihu (West Lake) Dis., Hongkong, Xihu (West Lake) Dis.
– Standard export airport: HangZhou, Hongkong, HangZhou
After-sales Service:
12 Month
Warranty:
12 Month
Material:
Stainless Steel
Samples:
1 Piece(Min.Order)
Customization:
Shipping Cost:
about shipping cost and estimated delivery time.
Payment Method:
Initial Payment
Full Payment
Currency:
US$
Return&refunds:
You can apply for a refund up to 30 days after receipt of the products.
.webp)
What are the differences between stationary and portable air compressors?
.webp)
How do you maintain proper air quality in compressed air systems?
.webp)
How does an air compressor work?


editor by CX 2023-12-02