Product Description
16Bar 15HP 20HP Air Compressor For Laser Cutting
Main Features:
1. The flexible belt will be automatically tensioned in use. Through adjusting the tension, minimize the loss of pressure and power, to enhance the efficiency of compression.
2. Using the precise spin-oil separator and special two-pole buffer separation, it can minimize the oil consumption, guarantee the outlet gas purity, and extend the lifetime of filter elements.
3. With the toothed V-belt, it has good heat dissipation, long life, higher gear drive and transmission efficiency, as high as over 98%.
Oil Filter: Good Quality filters ensure longer working life and save the maintenance time and cost.
Stainless Steel Hoses: High and low temperature resistant, high pressure resistant.
Compressed Air Vessel: Reduction of pressure drops and energy costs, quality air with low oil content.
Air End: Imported DLOL air end, advanced profile design.
Electric Motor: Premium efficiency Totally TEFC IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.
Air Filter: Two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environment.
Cooler: High quality aluminum material, alternating expression cooler fins, ensure the perfect radiating effect.
Technical parameters:
| Model | 20A/16 |
| Power | 20HP / 15KW |
| Pressure | 1.6MPa / 16bar |
| Air Flow | 1.0m3/min |
| Dimension | 1600*780*1600mm |
| Outlet size | G3/4 |
| Weight | 415KG |
Our workshop:
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Free Spare Parts |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2024-02-18
China best 11kw 15HP Screw Type Permanent Magnet Frequency Air Compressor for Fiber Laser Cutting Machine wholesaler
Product Description
Product Description
Product Name:Direct Driven 4 in 1 Screw Air Compressor with 300L Tank and Air Dryer
Power: 7.5KW 10HP
Pressure: 8bar
Air Flow: 1.1m3/min
Motor: IP54 motor
Air End: CHINAMFG Brand
Noise: 62±2dBA
Size: 1500*700*1480mm
Weight: 320kg
Detailed Photos
Product Parameters
| Model | Pressure | Air Flow | Power | Noise | Air Outlet Size | Weight | Dimensions |
| GATD-7.5 | 8bar/116psi | 0.7m3/min | 5.5kw/7.5hp | 62 | G 3/4 | 310 | 1550*700*1480 |
| GATD-10 | 8bar/116psi | 1.1m3/min | 7.5kw/10hp | 64 | G 3/4 | 320 | 1550*700*1480 |
| GATD-15 | 8bar/116psi | 1.5m3/min | 11kw/15hp | 66 | G 3/4 | 415 | 1600*780*1600 |
| GATD-20 | 8bar/116psi | 2.3m3/min | 15kw/20hp | 66 | G 3/4 | 415 | 1600*780*1600 |
| GATD-30 | 8bar/116psi | 3.3m3/min |
22kw/30hp | 66 | G 1 | 450 | 1600*780*1700 |
Company Profile
FAQ
Q1: Warranty terms of your machine?
A1: One year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 2000 units per month.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Spare Parts |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-17
China OEM ODM OEM Laser Cutting Industry Use All in One Integrated Screw Air Compressor 15kw 16 Bar Air Compressor Screw small air compressor
Product Description
ODM OEM Laser Cutting Industry Use All In One Integrated Screw Air Compressor 15KW 16 Bar Air Compressor Screw
Main Features:
1. The flexible belt will be automatically tensioned in use. Through adjusting the tension, minimize the loss of pressure and power, to enhance the efficiency of compression.
2. Using the precise spin-oil separator and special two-pole buffer separation, it can minimize the oil consumption, guarantee the outlet gas purity, and extend the lifetime of filter elements.
3. With the toothed V-belt, it has good heat dissipation, long life, higher gear drive and transmission efficiency, as high as over 98%.
Oil Filter: Good Quality filters ensure longer working life and save the maintenance time and cost.
Stainless Steel Hoses: High and low temperature resistant, high pressure resistant.
Compressed Air Vessel: Reduction of pressure drops and energy costs, quality air with low oil content.
Air End: Imported DLOL air end, advanced profile design.
Electric Motor: Premium efficiency Totally TEFC IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.
Air Filter: Two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environment.
Cooler: High quality aluminum material, alternating expression cooler fins, ensure the perfect radiating effect.
Technical parameters:
| Model | 20A/16 |
| Power | 20HP / 15KW |
| Pressure | 1.6MPa / 16bar |
| Air Flow | 1.0m3/min |
| Dimension | 1600*780*1600mm |
| Outlet size | G3/4 |
| Weight | 415KG |
Our workshop:
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Free Spare Parts |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-02-15
China supplier High Pressure Pistion Air Compressor for Fiber Laser Cutting Application wholesaler
Product Description
DuriAuxiliary gas for Fiber Laser Cutting, did you get the right one?
The schematic diagram of laser cutting is shown in the following.
During the process, auxiliary gas is necessary to blow off the slag/dross in the kerf and cool down the cutting surface, also it protects lens and nozzle of laser. Basically there are 3 kinds of gas: Oxygen, Nitrogen and Air, any of them affects directly to the cutting performance, speed, thickness etc. So we really need to think better before action.
1.Oxygen
Oxygen is commonly used to cut thick carbon steel because the chemical reaction between iron element and oxygen helps the metal absorb heat and promotes it melt, which can greatly improve the cutting efficiency.
However, oxygen will cause a marked oxide film on the cut surface and it will have a quenching effect around, increases the hardness which impact on subsequent processing. It also turns kerf to black or dark yellow.
Generally, Oxygen assists carbon steel plates cut, low-pressure punching, and low-pressure cutting. Oxygen is generally vaporized from liquid oxygen which provided by the local supplier, so the quality of the gas source is clean and no need special treatment.
2. Nitrogen
Nitrogen will form around the molten metal as protective atmosphere while it’s assisting the cut, prevent oxidation of the material, avoid the formation of oxide film. However, the cutting speed is not as fast as oxygen, and the nitrogen consumption of the nitrogen is large which means the cost will be higher.
The non-oxidized surface has the characteristics of direct welding, strong corrosion resistance and the kerf turns white.
Generally, nitrogen is used to cut stainless steel, galvanized sheet, aluminum, aluminum alloy, brass and other materials, by low-pressure perforation and high-pressure cutting. When cutting with nitrogen, the change of the gas flow has a great impact on the cutting performance, in this case, make sure the gas flow is sufficient and constant. Nitrogen is usually vaporized from liquid nitrogen provided by supplier, so the quality should be clean.
3. Air
Air, as it’s the most economic medium because it’s much easier to obtain than oxygen and nitrogen, nobody can charge you for air!
Every 1 knows the air contains about 20% oxygen and about 78% nitrogen, so it can make up for both shortage and cutting speed is slower than oxygen but faster than nitrogen. Since the oxygen is involved, the kerf turns a little bit yellow. It’s the most economic option for you as long as you are okay with the color change.
Generally compressed air can be used for cutting sheet-metal parts, aluminum sheet, nonmetal and galvanized sheet etc., air assist can certainly reduce the oxide film and absolutely save your cost, therefore, air assist is more and more equipped in fiber laser cut industry.
Compressed air can be obtained easily with an air compressor, but not any air compressor can be equipped for Fiber Laser Cutter as the Air itself is not clean, especially after compressing, there are plenty of water, oil and particles and any of them sprayed on the lens, the transmission of laser beam will be seriously affected and focus scattered, resulting bad cutting effect such as bottom burrs or rough kerf, even obsolescence.
Situation could be much worse if it is high-power fiber laser, even a tiny particle or a little spray will very possibly burn your entire lens cone.
In order to make the most economic (Air assist) way workable, ensure cutting quality and avoid any damage for your fiber laser, the compressed air must be pure and constant, 100% meet ISO 8573-1-2571 standard.
Dehaha 4-in-1 (Compressor + receiver tank+ dryer + filters) high pressure air compressor is special compressor for Fiber Laser Cutting industry, custom built to provide filtered, dried, continuous reliable supply of high pressure compressed air at 2~10ºCdew point to assist laser cutting. Produce your own assist air at a fraction of the cost of cylinder.
Product Parameters
Technical Parameters
| DBZY/DMZY Series(Combined with air dryer and tank) Screw Compressor | |||||||||
| Model | Air flow Capacity(m3/min)/cfm | Power kW/HP |
Noise DB(A) |
Diameter Inch |
Dimension W×D×H mm |
Weight kg |
Tank L |
||
| 16bar | |||||||||
| m3/min | cfm | ||||||||
| DBZY-10A | 0.55 | 19.4 | 7.5/10 | 65 | G3/4” | 1418×700×1500 | 395 | 260 | |
| DBZY-15A | 1.05 | 37 | 11/15 | 65 | G3/4” | 1882×790×1731 | 560 | 500 | |
| DBZY-20A | 1.05 | 37 | 15/20 | 65 | G3/4” | 1882×790×1731 | 572 | 500 | |
| DMZY-15A | 1.05 | 37 | 7.5/10 | 65 | G3/4” | 1418x700x1500 | 395 | 260 | |
| DMZY-20A | 1.52 | 53.7 | 15/20 | 65 | G3/4” | 1882x790x1731 | 572 | 500 | |
| DMZY-30A | 2.41 | 85.1 | 22/30 | 68 | G3/4” | 1882x1081x1801 | 630 | 500 | |
| DCZY-30A | 2.21 | 78 | 22/30 | 68 | G3/4” | 1882*1081*1801 | 630 | 500 | |
| DB-20A | 1.16 | 40.9 | 15/20 | 65 | G3/4” | 1162*690*1571 | 275 | / | |
| DBM-20A | 1.18 | 41.7 | 22/30 | 65 | G3/4” | 1162*690*1571 | 300 | / | |
| DC-30A | 2.20 | 77.7 | 22/30 | 68 | G1″ | 1330*830*1265 | 400 | / | |
| DM-30A | 2.41 | 85.1 | 22/30 | 68 | G1″ | 1330*830*1265 | 420 | / | |
| DM-50A | 3.90 | 137.6 | 37/50 | 72 | G1″ | 1550*940*1415 | 680 | / | |
Notes:1. A represents air-cooling type,W represents water-cooling type;
2. Working Environment temperature: -5ºC~45ºC;
3. Discharge temperature is less than ambient temperature +10ºC~15ºC;
4. Drive Mode: belt driven;
5. Startup Mode: direct start under 11kw, and above 11kw;
6. Work Power: 380V / 50HZ, 460V / 230V / 6KV and 10KV voltages can be made for customers;
7. F.A.D volume flow test is according to ASMC PTC9 or ISO1217 standard (GB/T3853)
Air compressor selection
Certificate
Project Case
Customer Feedback
Packaging and shipping
About Us
Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineersteams ‘ .We focus on the research & develop,manufacture and energy-saving solutions of screw air compressor to create value for customers and society.In 2018 our total sales volume approached 15 million US dollars.By over 23 years enhanced experiences of designing,
producing and marketing,today our valued customers are over 130 countries.
Germany Standard and 13 years exporting experience help us won more than 50 loyal overseas agents.
Dehaha’s primary businesses focus in following key areas:
Oil-injected rotary screw compressors
Portable screw air compressors
Oil free air compressors
High pressure air compressors
Air treatment equipment
At Dehaha,we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries.All of our products are designed for reliable performance,easy maintenance,and maximum energy efficiency.We have sales representatives who can speak English,Spanish,French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.
Dehaha continuously innovates product development and management to meet customers’ demand.The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle”Energy Saving First, Mutual Value Shared”. CHINAMFG mission is to be a world-renowned high-end brand,with sustainable development,constantly improving its own value and sharing it with our customers and staff.Committed to offer our customers a silent and energy-saving manufactured products.
Our Service
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in DEHAHA air compressor factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang and all distributors’depots.
6.All kinds of technical documents in different languages.
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of ZheJiang , China, more than 24 years.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1.The raw materials are strictly inspected
2. Some key parts are imported from overseas
3.Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 2years |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-11-16
China Good quality 37kw Industrial Oil Free Screw Air Compressor for Food Medical Industry Laser Cutting Engraving Welding Machine supplier
Product Description
Product Description
HY(V)-Z Series Medium Voltage Permanent Magnet Variable Frequency Screw Air Compressor
01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage, the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are HYiven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.
02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.
03.Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage, with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage, high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage, controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.
04.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.
05.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.
06.High quality triple filter
1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.
07.High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.
Overall energy saving of products
Compared with power frequency air compressor, energy-saving variable frequency air compressor has practical significance.
1. The pressure control of the inverter air compressor is accurate. It can quickly respond to pressure changes, adjust the speed of the permanent magnet motor, control the pressure fluctuation range within 0.1bar, stabilize the pipe network pressure, provide the necessary air volume with the most reasonable power, and reduce excess energy consumption.
2. The variable frequency air compressor adopts the method of variable frequency starting, which eliminates the CHINAMFG current of the star-delta starting, and starts smoothly. Reduce the starting power, reduce the impact on the grid and equipment, and reduce equipment operating noise.
3. The frequency conversion control is more excellent than the ordinary throttling control. The adjustment range of the flow rate is larger, and with the high-efficiency permanent magnet motor, the energy saving effect is more significant at low percentage flow rate.
4. Most of the cost in the life cycle of the air compressor is generated by the electricity it consumes. The power consumption of the compressor is closely related to the air used on site. The inverter air compressor can not only ensure smooth and guaranteed production, but also save considerable electricity bills and achieve a CHINAMFG situation for the enterprise.
Energy consumptionMaintenance cost
Purchase cost
Energy consumption-Maintenance cost
Purchase cost energy conservation
Product application scenarios
Mining equipment: used for high-pressure blasting mining, HYiving all kinds of pneumatic machinery.
Baling machine: the air compressor is used in the pneumatic baling machine. After compressing the air, the piston of the cylinder is pressed down to HYive the vibrator to move quickly, so that the overlapping part of the packing belt has a hot-melt effect.
Product case
An oil field borders the CHINAMFG Sea in the East, the central ZheJiang Plain in the west, ZheJiang Province in the southeast, and the junction of ZheJiang and HangZhou in the north. It spans 25 districts, cities and counties in ZheJiang , HangZhou and ZheJiang provinces. The exploration and development construction began in January 1964, with a total exploration and development area of 18716 square meters. The oil headquarters is located in ZheJiang Xihu (West Lake) Dis. New Area, the key development and opening-up construction area of the national “Eleventh Five Year Plan”. It is 190 kilometers away from ZheJiang , 40 kilometers away from ZheZheJiang ngang and 70 kilometers away from ZheJiang International Airport. It has a superior geographical location, developed sea, land and air transportation and convenient traffic. It is an important part of the CHINAMFG rim economic circle. HY-45z from CHINAMFG company is mainly used for pipeline purging and gas supply.
Medium voltage direct-coupled screw compressor
| HY-Z | Working pressure | Capacity | Power | NOise | Air outlet | Net weight | |||
| bar | Psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter |
||
| HY-18Z | 20 | 291 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 |
| 25 | 364 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 | |
| 30 | 437 | 1.7 | 61 | 18 | 25 | 65±3 | G3/4″ | 868 | |
| HY-22Z | 20 | 291 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 |
| 25 | 364 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 30 | 437 | 2.1 | 74 | 22 | 30 | 65 ±3 | G3/4″ | 900 | |
| 35 | 510 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 40 | 583 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| HY-37Z | 20 | 291 | 3.3 | 117 | 37 | 50 | 65 ±3 | G3/4″ | 1340 |
| 25 | 364 | 3.3 | 117 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| 30 | 437 | 3.3 | 117 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 35 | 510 | 3.0 | 106 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 40 | 583 | 3.0 | 106 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| HY-55Z | 20 | 291 | 6.4 | 225 | 55 | 75 | 67±3 | DN32 | 2100 |
| 25 | 364 | 5.0 | 176 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 30 | 437 | 4.7 | 165 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| 35 | 510 | 4.3 | 151 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 40 | 583 | 3.8 | 133 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| HY-75Z | 20 | 291 | 7.2 | 255 | 75 | 100 | 68±3 | DN32 | 2300 |
| 25 | 364 | 7.0 | 248 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 30 | 437 | 6.7 | 237 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 35 | 510 | 6.3 | 223 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 40 | 583 | 5.7 | 201 | 75 | 100 | 68±3 | DN32 | 2300 | |
| HY-90Z | 20 | 291 | 12.0 | 423 | 90 | 120 | 70 ±3 | DN32 | 2800 |
| 25 | 364 | 10.3 | 364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 10.0 | 353 | 90 | 120 | 70 ±3 | DN32 | 2800 | |
| 35 | 510 | 6.3 | 223 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 5.8 | 205 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HY-110Z | 20 | 291 | 13.7 | 483 | 110 | 150 | 72 ±3 | DN40 | 3000 |
| 25 | 364 | 12.5 | 440 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 30 | 437 | 10.3 | 363 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 35 | 510 | 9.6 | 339 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 40 | 583 | 9.1 | 321 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| HY-132Z | 20 | 291 | 16.3 | 576 | 132 | 175 | 74 ±3 | DN50 | 3200 |
| 25 | 364 | 13.5 | 476 | 132 | 175 | 74±3 | DN50 | 3200 | |
| 30 | 437 | 12.2 | 430 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 35 | 510 | 11.8 | 416 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 40 | 583 | 11.3 | 398 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| HY-160Z | 20 | 291 | 20.0 | 706 | 160 | 215 | 75 ±3 | DN50 | 3600 |
| 25 | 364 | 16.1 | 567 | 160 | 215 | 75 ±3 | DN50 | 3600 | |
| HY-185Z | 20 | 291 | 23.5 | 829 | 185 | 250 | 76±3 | DN50 | 3800 |
| 25 | 364 | 18.5 | 652 | 185 | 250 | 76±3 | DN50 | 3800 | |
| HY-200Z | 20 | 291 | 26.0 | 918 | 200 | 270 | 76±3 | DN50 | 4800 |
| 25 | 364 | 22.9 | 809 | 200 | 270 | 76±3 | DN50 | 4800 | |
| 30 | 437 | 22.2 | 783 | 200 | 270 | 76 ±3 | DN50 | 4800 | |
| HY-200ZW | 20 | 291 | 30.2 | 1067 | 220 | 300 | 78 ±3 | DN65 | 5000 |
| 25 | 364 | 25.8 | 911 | 220 | 300 | 78 ±3 | DN65 | 5000 | |
| 30 | 437 | 23.2 | 819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 22.0 | 776 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HY-250ZW | 20 | 291 | 34.2 | 1207 | 250 | 350 | 78±3 | DN65 | 5500 |
| 25 | 364 | 29.1 | 1026 | 250 | 350 | 78 ±3 | DN65 | 5500 | |
| 30 | 437 | 27.5 | 972 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 35 | 510 | 25.2 | 888 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 40 | 583 | 22.8 | 804 | 250 | 350 | 78±3 | DN65 | 5500 | |
| HY-280ZW | 20 | 291 | 37.7 | 1330 | 280 | 375 | 80±3 | DN65 | 5800 |
| 25 | 364 | 34.0 | 1200 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 30 | 437 | 30.0 | 1060 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 35 | 510 | 27.3 | 965 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 40 | 583 | 25.0 | 881 | 280 | 375 | 80±3 | DN65 | 5800 | |
| HY-315ZW | 30 | 437 | 33.7 | 1189 | 315 | 422 | 80±3 | DN65 | 6400 |
| 35 | 510 | 29.8 | 1053 | 315 | 422 | 80±3 | DN65 | 6400 | |
| 40 | 583 | 27.1 | 958 | 315 | 422 | 80±3 | DN65 | 6400 | |
Huayan compressor product parameter table follows
1 The exhaust gas volume value is the gas volume flow rate in the following state (temperature: 32°C, atmospheric pressure: 101.325KPa)
2. Pressure value after exhaust pressure check valve
3. The noise value is the value in the anechoic chamber, test tolerance: 3dB(A)
Medium voltage permanent magnet variable frequency screw compressor
| HY(V)-Z | Working pressure | Capacity | Power | Noise | Air outlet | Net weight | |||
| bar | psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter | ||
| HYV-55Z | 20 | 291 | 3.8-6.4 | 134-226 | 55 | 75 | 67±3 | DN32 | 2200 |
| 25 | 364 | 3.6-6.0 | 127-212 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 30 | 437 | 3.1-5.2 | 109-184 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 35 | 510 | 2.6-4.3 | 92-152 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 40 | 583 | 2.3-3.8 | 81-134 | 55 | 75 | 67±3 | DN32 | 2200 | |
| HYV-75Z | 20 | 291 | 4.6-7.7 | 162-272 | 75 | 100 | 68±3 | DN32 | 2400 |
| 25 | 364 | 4.5-7.5 | 159-265 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 30 | 437 | 4.0-6.7 | 141-237 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 35 | 510 | 3.8-6.3 | 134-222 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 40 | 583 | 3.0-5.0 | 106-177 | 75 | 100 | 68±3 | DN32 | 2400 | |
| HY-90Z | 20 | 291 | 6.7-11.2 | 237-396 | 90 | 120 | 70±3 | DN32 | 2800 |
| 25 | 364 | 6.2-10.3 | 219-364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 6.0-10.0 | 212-353 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 35 | 510 | 4.1-6.8 | 145-240 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 3.8-6.3 | 134-222 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HYV-110Z | 20 | 291 | 8.2-13.6 | 290-480 | 110 | 150 | 72±3 | DN40 | 3100 |
| 25 | 364 | 7.5-12.5 | 265-441 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 30 | 437 | 6.5-10.8 | 230-381 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 35 | 510 | 5.8-9.6 | 205-339 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 40 | 583 | 5.5-9.1 | 194-321 | 110 | 150 | 72±3 | DN40 | 3100 | |
| HYV-132Z | 20 | 291 | 10.1-16.8 | 357-593 | 132 | 175 | 74±3 | DN40 | 3300 |
| 25 | 364 | 9.0-15.0 | 318-530 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 30 | 437 | 7.9-13.1 | 279-463 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 35 | 510 | 7.1-11.8 | 251-417 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 40 | 583 | 6.8-11.3 | 240-399 | 132 | 175 | 74±3 | DN40 | 3300 | |
| HYV-160Z | 20 | 291 | 9.6-16.0 | 339-565 | 160 | 215 | 75±3 | DN50 | 3800 |
| 25 | 364 | 10.0-16.6 | 353-586 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 30 | 437 | 9.8-16.3 | 346-576 | 160 | 215 | 75±3 | DN40 | 3700 | |
| 35 | 510 | 9.4-15.6 | 332-551 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 40 | 583 | 8.3-13.8 | 293-487 | 160 | 215 | 75±3 | DN40 | 3700 | |
| HYV-185Z | 20 | 291 | 14.1-23.5 | 498-830 | 185 | 250 | 76±3 | DN50 | 4000 |
| 25 | 364 | 11.7-19.5 | 413-689 | 185 | 250 | 76±3 | DN50 | 4000 | |
| HYV-200Z | 20 | 291 | 15.6-26.0 | 551-918 | 200 | 270 | 76±3 | DN50 | 4200 |
| 25 | 364 | 13.7-22.9 | 484-809 | 200 | 270 | 76±3 | DN50 | 4200 | |
| 30 | 437 | 13.3-22.2 | 470-784 | 200 | 270 | 76±3 | DN50 | 4200 | |
| HYV-220ZW | 20 | 291 | 17.8-29.7 | 629-1049 | 220 | 300 | 78±3 | DN65 | 5000 |
| 25 | 364 | 15.5-25.8 | 547-911 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 30 | 437 | 13.9-23.2 | 491-819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 13.2-22.0 | 565-777 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 40 | 583 | 12.2-20.3 | 431-717 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HYV-250ZW | 20 | 291 | 20.5-34.2 | 724-1208 | 250 | 350 | 78±3 | DN65 | 5700 |
| 25 | 364 | 17.5-29.1 | 618-1571 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 30 | 437 | 16.5-27.5 | 583-971 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 35 | 510 | 15.1-25.2 | 533-890 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 40 | 583 | 13.7-22.8 | 484-805 | 250 | 350 | 78±3 | DN65 | 5700 | |
| HYV-280ZW | 20 | 291 | 22.6-37.7 | 798-1331 | 280 | 375 | 80±3 | DN65 | 6000 |
| 25 | 364 | 20.4-34.0 | 720-1201 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 30 | 437 | 18.0-30.0 | 636-1059 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 35 | 510 | 16.4-27.3 | 579-964 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 40 | 583 | 15.0-25.0 | 530-883 | 280 | 375 | 80±3 | DN65 | 6500 | |
4. Please consult our company for use in harsh working conditions such as high temperature, high humidity, high cold and high dust
5. Dimensions and weight of the whole machine are subject to change without prior notice
5. Please do not use compressed air directly for medical equipment inhaled by the human body
FAQ
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
| After-sales Service: | Provide After-Sell Sevice |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-11-08
China Standard Factory Wholesale High Quality 7.5kw/11kw/15kw/22kw 8/10/13/16bar Midium Pressure Pm VSD Screw Air Compressor for Industrial Laser Cutting with CE, OEM Provided with Great quality
Product Description
Factory Wholesale High Quality 7.5kw/11kw/15kw/22kw 8/10/13/16bar Midium Pressure Pm VSD Screw Air Compressor for Industrial Laser Cutting with CE, OEM Provided
Technical Parameters:
| Model | Power (KW) |
V/Hz | pressure (Bar) |
Air flow (m3/min) |
Bsp(inch) | L×W×H(mm) | Kg |
| WZS-10GST | 7.5 | 380/50 | 8.5 | 1.1 | RC3/4 | 1850X800X1800 | 480 |
| 10.5 | 1.0 | ||||||
| 13.5 | 0.8 | ||||||
| 16.5 | 0.4 | ||||||
| WZS-11GS | 11 | 380/50 | 16.5 | 0.84 | RC1 | 1300X860X1030 | 380 |
| WZS-11GST | 11 | 380/50 | 8.5 | 0.7 | RC1 | 1850X800X1800 | 600 |
| 10.5 | 1.4 | ||||||
| 13.5 | 1.2 | ||||||
| 16.5 | 0.84 | ||||||
| WZS-15GS | 15 | 380/50 | 16.5 | 1.4 | RC1 | 1300X860X1030 | 480 |
| WZS-15GST | 15 | 380/50 | 8.5 | 2.4 | RC1 | 1850X800X1850 | 650 |
| 10.5 | 2.1 | ||||||
| 13.5 | 1.8 | ||||||
| 16.5 | 1.4 | ||||||
| WZS-22GS | 22 | 380/50 | 16.5 | 2.2 | RC1 1/4 | 1380X850X1150 | 620 |
| WZS-22GST | 22 | 380/50 | 8.5 | 3.6 | RC1 1/4 | 1850X800X1850 | 680 |
| 10.5 | 3.0 | ||||||
| 13.5 | 2.3 | ||||||
| 16.5 | 2.2 | ||||||
| WZS-30GS | 30 | 380/50 | 16.5 | 2.93 | RC1 1/4 | 1380X850X1150 | 680 |
| WZS-37GS | 37 | 380/50 | 16.5 | 3.63 | RC1 1/2 | 1600X1000X1420 | 850 |
| WZS-45GS | 45 | 380/50 | 16.5 | 4.63 | RC1 1/2 | 1600X1000X1420 | 880 |
| WZS-55GS | 55 | 380/50 | 16.5 | 5.70 | RC2 | 1800X1260X1550 | 1350 |
| WZS-75GS | 75 | 380/50 | 16.5 | 7.81 | RC2 | 2150X1300X1700 | 1650 |
| WZS-90GS | 90 | 380/50 | 16.5 | 9.64 | RC2 | 2150X1300X1700 | 1950 |
| WZS-110GS | 110 | 380/50 | 16.5 | 11.58 | DN65 | 2550X1650X1850 | 2600 |
| WZS-132GS | 132 | 380/50 | 16.5 | 14.62 | DN80 | 2550X1650X1850 | 2880 |
| WZS-160GS | 160 | 380/50 | 16.5 | 17.18 | DN80 | 2950X1800X1850 | 3200 |
COMPANY PROFILE
Wan CHINAMFG Compressor (ZheJiang ) Co.,Ltd located in ZheJiang Xihu (West Lake) Dis. industrial zone, which is a professional manufacturer Factory always
has been committed to the R&D of permanent magnet variable frequency screw air compressors, reached the national standard. Our products in-
clude integrated, split permanent magnet variable frequency screw air compressor series, non-inductive permanent magnet variable-frequency
screw air compressor series, integrated oil motor permanent magnet variable frequency screw air compressor series, low-pressure permanent
magnet variable frequency screw air compressor series, two-stage compression permanent magnet variable frequency screw air compressor
series, refrigerated dryer series, adsorption dryer series, high-efficiency precision filter series , air tank series , etc.
We have more than 1 hundred distributors in China. Products have been exported to Europe, North America, Southeast Asia and the Middle
East for many years, also occupy a large part of the domestic market, and the sales volumn is still growing year by year. For many years, Wan
Beardsley has become a trusted supplier of screw air compressors with rich experience and continuous innovative technology.
WORKSHOP
EXHIBITIONS
PROJECT CASES
100+ DISTRIBUTORS
PACKAGING STYLE
SHIPPING
CERTIFICATES
FAQ
1. OEM/ODM, or customer’ s logo printed is available?
Yes, OEM/ODM, customer’s logo is welcomed.
2. Delivery date?
Usually 5-25 working days after receiving deposit, specific delivery date based on order quantity.
3. What’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
4. How to control your quality?
We have professional QC team, control the quality during the mass production and inspect the products before shipping.
5. If we don’ t have shipping forwarder in China , would you do this for us ?
We can offer you best shipping line to ensure you can get the goods timely at best price.
6. I never come to China before , can you be my guide in China ?
Sure , I’m glad to be your guide because our company directly located in ZheJiang , where is the most famous city in China, if you want to come China then we are happy to provide you one-stop service, such as booking ticket, picking up at the airport, booking hotel, accompany visiting factory. It gonna make you an unforgettable memory.
MARKETING NETWORK
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | Unit 1 Year, Air End 2 Years |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-11-07
China best 15kw 20 HP Laser Cutting Air Compressor 4-in-1 Combined Rotary CHINAMFG with Best Sales
Product Description
Product Description
All in 1 solution
DEHAHA ALL IN ONE series compressed air system integrates screw air compressor, refrigerated air dryer, and air receiver tank into 1 assembly. This compact assembly provides a complete solution to produce clean and dry compressed air. Simplicity in just connecting an outlet pipe, drain pipe, and electrical cables to the system saves cost and space.
Product features
1. One-piece integration, small space occupation, easy to install and move
2. Permanent magnet frequency conversion, high efficiency and energy saving
3. Provide compressed air that is pure and dry to almost anhydrous and oil-free
4. Multiple protection devices, multiple shock and noise reduction configurations, low noise
Technical Parameters
| Model | Air Delivery (m3/min) | Rated exhaust pressure (Mpa) | Power (kW) | Noise (Db) | Outlet diameter (In) | Dimension (mm) | Weight (Kg) | Exhaust pressure dew point (ºC) |
Exhaust dust content (μm) |
Exhaust oil content (ppm) | Gas storage tank capacity (L) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DBZY-10A | 0.55 | 1.58 | 7.5 | 65 | G3/4 | 1418*700*1500 | 395 | 2~10 | 0.01 | 0.01 | 260 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DBZY-15A | 1.05 | 1.58 | 11 | 65 | G3/4 | 1882*790*1731 | 560 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DBZY-20A | 1.51 | 1.58 | 15 | 65 | G3/4 | 1882*790*1731 | 572 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DMZY-15A | 1.05 | 1.58 | 11 | 65 | G3/4 | 1882*790*1731 | 560 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DMZY-20A | 1.52 | 1.58 | 15 | 65 | G3/4 | 1882*790*1731 | 572 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DMZY-30A | 2.41 | 1.58 | 22 | 68 | G3/4 | 1882*1081*1801 | 630 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| DCZY-30A | 2.21 | 1.58 | 22 | 68 | G3/4 | 1882*1081*1801 | 630 | 2~10 | 0.01 | 0.01 | 500 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Packaging & Shipping
Project case
Related Products
Certifications
Customer feedback
Company Profile
Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineersteams ‘ .We focus on the research & develop,manufacture and energy-saving solutions of screw air compressor to create value for customers and society.In 2018 our total sales volume approached 15 million US dollars.By over 23 years enhanced experiences of designing,producing and marketing,today our valued customers are over 130 countries.Germany Standard and 13 years exporting experience help us won more than 50 loyal overseas agents.
Dehaha’s primary businesses focus in following key areas:
Oil-injected rotary screw compressors
Portable screw air compressors
Oil free air compressors
High pressure air compressors
Air treatment equipment
At Dehaha,we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air
products for all industries.All of our products are designed for reliable performance,easy maintenance,and maximum energy efficiency.We have sales representatives who can speak English,Spanish,French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.
Dehaha continuously innovates product development and management to meet customers’ demand.The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle”Energy Saving First, Mutual Value Shared”. CHINAMFG mission is to be a world-renowned high-end brand,with sustainable development,constantly improving its own value and sharing it with our customers and staff.Committed to offer our customers a silent and energy-saving manufactured products.
Our service
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in DEHAHA air compressor factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang and all distributors’depots.
6.All kinds of technical documents in different languages.
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of ZheJiang , China, more than 24 years.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1.The raw materials are strictly inspected
2. Some key parts are imported from overseas
3.Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24montrhs |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 5200/set
1 set(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-11-01
China supplier 15HP 11kw Direct Driven 16bar Portable Electric Industrial AC Power Screw Air Compressors for Fiber Laser Cutting Application air compressor repair near me
Product Description
Product Description
Product Description
All in 1 solution
Rocky ALL IN ONE series compressed air system integrates screw air compressor, refrigerated air dryer, and air receiver tank into 1 assembly. This compact assembly provides a complete solution to produce clean and dry compressed air. Simplicity in just connecting an outlet pipe, drain pipe, and electrical cables to the system saves cost and space.
High-efficiency host, energy-saving and high-efficiency, low noise.
High-efficiency precision filter, high filtration precision, provide pure compressed air.
400L large-capacity gas storage tank, gas storage buffer.
Technical Parameters
|
Item Name |
air compressor,air dryer,air tank,fine filter/OEM |
||
|
Air Compressor Series |
RMZY-15A |
||
|
Air Delivery |
1.05m3/min 37cfm |
||
|
Minimum Order Quantity (MOQ) |
1set |
||
|
Material Details |
1.You can choose ABB intelligent control. |
||
|
Certification |
ISO9001 CE TUV ASME |
||
|
Quality Guarantee Period |
1year |
||
|
Voltage |
110V – 660V 50Hz/60Hz 3ph,Support 1 machine for 2 voltages |
||
|
Delivery Time |
Shipped in 25 days after payment |
||
|
Dimension(W×D×H mm) |
1800*850*1770mmmm |
||
|
Transfer method |
Direct drive, permanent magnet frequency conversion |
||
|
Exhaust pressure dew point |
2~10°C |
||
|
Exhaust dust content |
0.01um |
||
|
Exhaust oil content |
0.01ppm |
||
|
Gas storage tank capacity |
400L |
||
|
Our service |
1.No matter when or where,24 hours service for you |
||
| Model | Air Delivery (m3/min) | Rated exhaust pressure (Bar) | Power (kW) | Noise (Db) | Outlet diameter (In) | Dimension (mm) | Weight (Kg) | Exhaust pressure dew point (ºC) |
Exhaust dust content (μm) |
Exhaust oil content (ppm) | Gas storage tank capacity (L) | ||||||||||||||||||||||||||||||||||||||||
| RMZY-15A | 1.05 | 16 | 11/15 | 65 | G3/4 | 1800*900*1780 | 380 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-20A | 1.52 | 16 | 15/20 | 65 | G3/4 | 1800*900*1780 | 400 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-30A | 2.41 | 16 | 22/30 | 65 | G3/4 | 1800*1100*1850 | 500 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-30AA | 2.41 | 16 | 22/30 | 65 | G3/4 | 1800*1100*1850 | 620 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-15AS | 1.05 | 18-20 | 11/15 | 65 | G3/4 | 1800*900*1780 | 380 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-20AS | 1.52 | 18-20 | 15/20 | 68 | G3/4 | 1800*850*1770 | 400 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-30AS | 2.41 | 18-20 | 22/30 | 68 | G3/4 | 1800*870*1940 | 500 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
| RMZY-30AAS | 2.41 | 18-20 | 22/30 | 68 | G3/4 | 2280*900*2100 | 620 | 2~10 | 0.01 | 0.01 | 400 | ||||||||||||||||||||||||||||||||||||||||
Certifications
Successful cases
Packaging & Shipping
Packaging & Shipping
1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
Company Profile
ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!
Exhibitions
After Sales Service
1. 24/7 after sales service support in different languages.
2. Customized color, Model ect.
3. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4. Delivery on time and excellent after-sales service.
5. Plenty of original spare parts with proven quality.
6. All kinds of technical documents in different languages.
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24month |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-25