Product Description
| Product description: |
| Specification: |
Certifications:
| Company Information: |
HangZhou CHINAMFG Air Compressor Manufacturing Co., Ltd. is located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province. With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and renowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition . With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation . Choosing HangZhou Atlas Air compressor Manufacturing Co.,Led.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
FAQ:
Q1: Are you factory or trade company?
A1: We are factory. Please check Our Company Profile.
Q2: What the exactly address of your factory?
A2: Xihu (West Lake) Dis. Innovation Park, Zaoyuan Town, HangZhou, ZheJiang , China
Q3: Warranty terms of your machine?
A3: 18 months warranty for the machine,technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes.
Q5: How long will you take to arrange production?
A5: Deliver standard goods within 30days, Other customized goods is TBD.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Samples: |
US$ 4300/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-14
China Good quality 37kw Industrial Oil Free Screw Air Compressor for Food Medical Industry Laser Cutting Engraving Welding Machine supplier
Product Description
Product Description
HY(V)-Z Series Medium Voltage Permanent Magnet Variable Frequency Screw Air Compressor
01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage, the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are HYiven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.
02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.
03.Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage, with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage, high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage, controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.
04.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.
05.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.
06.High quality triple filter
1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.
07.High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.
Overall energy saving of products
Compared with power frequency air compressor, energy-saving variable frequency air compressor has practical significance.
1. The pressure control of the inverter air compressor is accurate. It can quickly respond to pressure changes, adjust the speed of the permanent magnet motor, control the pressure fluctuation range within 0.1bar, stabilize the pipe network pressure, provide the necessary air volume with the most reasonable power, and reduce excess energy consumption.
2. The variable frequency air compressor adopts the method of variable frequency starting, which eliminates the CHINAMFG current of the star-delta starting, and starts smoothly. Reduce the starting power, reduce the impact on the grid and equipment, and reduce equipment operating noise.
3. The frequency conversion control is more excellent than the ordinary throttling control. The adjustment range of the flow rate is larger, and with the high-efficiency permanent magnet motor, the energy saving effect is more significant at low percentage flow rate.
4. Most of the cost in the life cycle of the air compressor is generated by the electricity it consumes. The power consumption of the compressor is closely related to the air used on site. The inverter air compressor can not only ensure smooth and guaranteed production, but also save considerable electricity bills and achieve a CHINAMFG situation for the enterprise.
Energy consumptionMaintenance cost
Purchase cost
Energy consumption-Maintenance cost
Purchase cost energy conservation
Product application scenarios
Mining equipment: used for high-pressure blasting mining, HYiving all kinds of pneumatic machinery.
Baling machine: the air compressor is used in the pneumatic baling machine. After compressing the air, the piston of the cylinder is pressed down to HYive the vibrator to move quickly, so that the overlapping part of the packing belt has a hot-melt effect.
Product case
An oil field borders the CHINAMFG Sea in the East, the central ZheJiang Plain in the west, ZheJiang Province in the southeast, and the junction of ZheJiang and HangZhou in the north. It spans 25 districts, cities and counties in ZheJiang , HangZhou and ZheJiang provinces. The exploration and development construction began in January 1964, with a total exploration and development area of 18716 square meters. The oil headquarters is located in ZheJiang Xihu (West Lake) Dis. New Area, the key development and opening-up construction area of the national “Eleventh Five Year Plan”. It is 190 kilometers away from ZheJiang , 40 kilometers away from ZheZheJiang ngang and 70 kilometers away from ZheJiang International Airport. It has a superior geographical location, developed sea, land and air transportation and convenient traffic. It is an important part of the CHINAMFG rim economic circle. HY-45z from CHINAMFG company is mainly used for pipeline purging and gas supply.
Medium voltage direct-coupled screw compressor
| HY-Z | Working pressure | Capacity | Power | NOise | Air outlet | Net weight | |||
| bar | Psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter |
||
| HY-18Z | 20 | 291 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 |
| 25 | 364 | 1.7 | 61 | 18 | 25 | 65 ±3 | G3/4″ | 868 | |
| 30 | 437 | 1.7 | 61 | 18 | 25 | 65±3 | G3/4″ | 868 | |
| HY-22Z | 20 | 291 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 |
| 25 | 364 | 2.1 | 74 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 30 | 437 | 2.1 | 74 | 22 | 30 | 65 ±3 | G3/4″ | 900 | |
| 35 | 510 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| 40 | 583 | 1.6 | 57 | 22 | 30 | 65±3 | G3/4″ | 900 | |
| HY-37Z | 20 | 291 | 3.3 | 117 | 37 | 50 | 65 ±3 | G3/4″ | 1340 |
| 25 | 364 | 3.3 | 117 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| 30 | 437 | 3.3 | 117 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 35 | 510 | 3.0 | 106 | 37 | 50 | 65 ± 3 | G3/4″ | 1340 | |
| 40 | 583 | 3.0 | 106 | 37 | 50 | 65±3 | G3/4″ | 1340 | |
| HY-55Z | 20 | 291 | 6.4 | 225 | 55 | 75 | 67±3 | DN32 | 2100 |
| 25 | 364 | 5.0 | 176 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 30 | 437 | 4.7 | 165 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| 35 | 510 | 4.3 | 151 | 55 | 75 | 67±3 | DN32 | 2100 | |
| 40 | 583 | 3.8 | 133 | 55 | 75 | 67 ±3 | DN32 | 2100 | |
| HY-75Z | 20 | 291 | 7.2 | 255 | 75 | 100 | 68±3 | DN32 | 2300 |
| 25 | 364 | 7.0 | 248 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 30 | 437 | 6.7 | 237 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 35 | 510 | 6.3 | 223 | 75 | 100 | 68±3 | DN32 | 2300 | |
| 40 | 583 | 5.7 | 201 | 75 | 100 | 68±3 | DN32 | 2300 | |
| HY-90Z | 20 | 291 | 12.0 | 423 | 90 | 120 | 70 ±3 | DN32 | 2800 |
| 25 | 364 | 10.3 | 364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 10.0 | 353 | 90 | 120 | 70 ±3 | DN32 | 2800 | |
| 35 | 510 | 6.3 | 223 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 5.8 | 205 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HY-110Z | 20 | 291 | 13.7 | 483 | 110 | 150 | 72 ±3 | DN40 | 3000 |
| 25 | 364 | 12.5 | 440 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 30 | 437 | 10.3 | 363 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 35 | 510 | 9.6 | 339 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| 40 | 583 | 9.1 | 321 | 110 | 150 | 72 ±3 | DN40 | 3000 | |
| HY-132Z | 20 | 291 | 16.3 | 576 | 132 | 175 | 74 ±3 | DN50 | 3200 |
| 25 | 364 | 13.5 | 476 | 132 | 175 | 74±3 | DN50 | 3200 | |
| 30 | 437 | 12.2 | 430 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 35 | 510 | 11.8 | 416 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| 40 | 583 | 11.3 | 398 | 132 | 175 | 74 ±3 | DN50 | 3200 | |
| HY-160Z | 20 | 291 | 20.0 | 706 | 160 | 215 | 75 ±3 | DN50 | 3600 |
| 25 | 364 | 16.1 | 567 | 160 | 215 | 75 ±3 | DN50 | 3600 | |
| HY-185Z | 20 | 291 | 23.5 | 829 | 185 | 250 | 76±3 | DN50 | 3800 |
| 25 | 364 | 18.5 | 652 | 185 | 250 | 76±3 | DN50 | 3800 | |
| HY-200Z | 20 | 291 | 26.0 | 918 | 200 | 270 | 76±3 | DN50 | 4800 |
| 25 | 364 | 22.9 | 809 | 200 | 270 | 76±3 | DN50 | 4800 | |
| 30 | 437 | 22.2 | 783 | 200 | 270 | 76 ±3 | DN50 | 4800 | |
| HY-200ZW | 20 | 291 | 30.2 | 1067 | 220 | 300 | 78 ±3 | DN65 | 5000 |
| 25 | 364 | 25.8 | 911 | 220 | 300 | 78 ±3 | DN65 | 5000 | |
| 30 | 437 | 23.2 | 819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 22.0 | 776 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HY-250ZW | 20 | 291 | 34.2 | 1207 | 250 | 350 | 78±3 | DN65 | 5500 |
| 25 | 364 | 29.1 | 1026 | 250 | 350 | 78 ±3 | DN65 | 5500 | |
| 30 | 437 | 27.5 | 972 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 35 | 510 | 25.2 | 888 | 250 | 350 | 78±3 | DN65 | 5500 | |
| 40 | 583 | 22.8 | 804 | 250 | 350 | 78±3 | DN65 | 5500 | |
| HY-280ZW | 20 | 291 | 37.7 | 1330 | 280 | 375 | 80±3 | DN65 | 5800 |
| 25 | 364 | 34.0 | 1200 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 30 | 437 | 30.0 | 1060 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 35 | 510 | 27.3 | 965 | 280 | 375 | 80±3 | DN65 | 5800 | |
| 40 | 583 | 25.0 | 881 | 280 | 375 | 80±3 | DN65 | 5800 | |
| HY-315ZW | 30 | 437 | 33.7 | 1189 | 315 | 422 | 80±3 | DN65 | 6400 |
| 35 | 510 | 29.8 | 1053 | 315 | 422 | 80±3 | DN65 | 6400 | |
| 40 | 583 | 27.1 | 958 | 315 | 422 | 80±3 | DN65 | 6400 | |
Huayan compressor product parameter table follows
1 The exhaust gas volume value is the gas volume flow rate in the following state (temperature: 32°C, atmospheric pressure: 101.325KPa)
2. Pressure value after exhaust pressure check valve
3. The noise value is the value in the anechoic chamber, test tolerance: 3dB(A)
Medium voltage permanent magnet variable frequency screw compressor
| HY(V)-Z | Working pressure | Capacity | Power | Noise | Air outlet | Net weight | |||
| bar | psig | (m3/min) | cfm | kW | hp | dB | Pipe diameter | ||
| HYV-55Z | 20 | 291 | 3.8-6.4 | 134-226 | 55 | 75 | 67±3 | DN32 | 2200 |
| 25 | 364 | 3.6-6.0 | 127-212 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 30 | 437 | 3.1-5.2 | 109-184 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 35 | 510 | 2.6-4.3 | 92-152 | 55 | 75 | 67±3 | DN32 | 2200 | |
| 40 | 583 | 2.3-3.8 | 81-134 | 55 | 75 | 67±3 | DN32 | 2200 | |
| HYV-75Z | 20 | 291 | 4.6-7.7 | 162-272 | 75 | 100 | 68±3 | DN32 | 2400 |
| 25 | 364 | 4.5-7.5 | 159-265 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 30 | 437 | 4.0-6.7 | 141-237 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 35 | 510 | 3.8-6.3 | 134-222 | 75 | 100 | 68±3 | DN32 | 2400 | |
| 40 | 583 | 3.0-5.0 | 106-177 | 75 | 100 | 68±3 | DN32 | 2400 | |
| HY-90Z | 20 | 291 | 6.7-11.2 | 237-396 | 90 | 120 | 70±3 | DN32 | 2800 |
| 25 | 364 | 6.2-10.3 | 219-364 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 30 | 437 | 6.0-10.0 | 212-353 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 35 | 510 | 4.1-6.8 | 145-240 | 90 | 120 | 70±3 | DN32 | 2800 | |
| 40 | 583 | 3.8-6.3 | 134-222 | 90 | 120 | 70±3 | DN32 | 2800 | |
| HYV-110Z | 20 | 291 | 8.2-13.6 | 290-480 | 110 | 150 | 72±3 | DN40 | 3100 |
| 25 | 364 | 7.5-12.5 | 265-441 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 30 | 437 | 6.5-10.8 | 230-381 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 35 | 510 | 5.8-9.6 | 205-339 | 110 | 150 | 72±3 | DN40 | 3100 | |
| 40 | 583 | 5.5-9.1 | 194-321 | 110 | 150 | 72±3 | DN40 | 3100 | |
| HYV-132Z | 20 | 291 | 10.1-16.8 | 357-593 | 132 | 175 | 74±3 | DN40 | 3300 |
| 25 | 364 | 9.0-15.0 | 318-530 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 30 | 437 | 7.9-13.1 | 279-463 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 35 | 510 | 7.1-11.8 | 251-417 | 132 | 175 | 74±3 | DN40 | 3300 | |
| 40 | 583 | 6.8-11.3 | 240-399 | 132 | 175 | 74±3 | DN40 | 3300 | |
| HYV-160Z | 20 | 291 | 9.6-16.0 | 339-565 | 160 | 215 | 75±3 | DN50 | 3800 |
| 25 | 364 | 10.0-16.6 | 353-586 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 30 | 437 | 9.8-16.3 | 346-576 | 160 | 215 | 75±3 | DN40 | 3700 | |
| 35 | 510 | 9.4-15.6 | 332-551 | 160 | 215 | 75±3 | DN50 | 3800 | |
| 40 | 583 | 8.3-13.8 | 293-487 | 160 | 215 | 75±3 | DN40 | 3700 | |
| HYV-185Z | 20 | 291 | 14.1-23.5 | 498-830 | 185 | 250 | 76±3 | DN50 | 4000 |
| 25 | 364 | 11.7-19.5 | 413-689 | 185 | 250 | 76±3 | DN50 | 4000 | |
| HYV-200Z | 20 | 291 | 15.6-26.0 | 551-918 | 200 | 270 | 76±3 | DN50 | 4200 |
| 25 | 364 | 13.7-22.9 | 484-809 | 200 | 270 | 76±3 | DN50 | 4200 | |
| 30 | 437 | 13.3-22.2 | 470-784 | 200 | 270 | 76±3 | DN50 | 4200 | |
| HYV-220ZW | 20 | 291 | 17.8-29.7 | 629-1049 | 220 | 300 | 78±3 | DN65 | 5000 |
| 25 | 364 | 15.5-25.8 | 547-911 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 30 | 437 | 13.9-23.2 | 491-819 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 35 | 510 | 13.2-22.0 | 565-777 | 220 | 300 | 78±3 | DN65 | 5000 | |
| 40 | 583 | 12.2-20.3 | 431-717 | 220 | 300 | 78±3 | DN65 | 5000 | |
| HYV-250ZW | 20 | 291 | 20.5-34.2 | 724-1208 | 250 | 350 | 78±3 | DN65 | 5700 |
| 25 | 364 | 17.5-29.1 | 618-1571 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 30 | 437 | 16.5-27.5 | 583-971 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 35 | 510 | 15.1-25.2 | 533-890 | 250 | 350 | 78±3 | DN65 | 5700 | |
| 40 | 583 | 13.7-22.8 | 484-805 | 250 | 350 | 78±3 | DN65 | 5700 | |
| HYV-280ZW | 20 | 291 | 22.6-37.7 | 798-1331 | 280 | 375 | 80±3 | DN65 | 6000 |
| 25 | 364 | 20.4-34.0 | 720-1201 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 30 | 437 | 18.0-30.0 | 636-1059 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 35 | 510 | 16.4-27.3 | 579-964 | 280 | 375 | 80±3 | DN65 | 6000 | |
| 40 | 583 | 15.0-25.0 | 530-883 | 280 | 375 | 80±3 | DN65 | 6500 | |
4. Please consult our company for use in harsh working conditions such as high temperature, high humidity, high cold and high dust
5. Dimensions and weight of the whole machine are subject to change without prior notice
5. Please do not use compressed air directly for medical equipment inhaled by the human body
FAQ
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
| After-sales Service: | Provide After-Sell Sevice |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-11-08