Product Description
| Series | Typical model | Displ. | Cooling Capaciry | COP | Capacitor | Compressor Hight | Test Mode | |
| cc | W | Btu/h | w/w | uF/V | mm | |||
| TH | TH420RC | 42.0 | 7250 | 24737 | 3.30 | — | 339.7 | ASHRAE/T |
| TH428RC | 42.8 | 7340 | 25044 | 3.25 | — | 339.7 | ASHRAE/T | |
| TH446RC | 44.6 | 7500 | 25590 | 3.25 | — | 347.7 | ASHRAE/T | |
| THK40P***U | 47.2 | 7850 | 26784 | 3.12 | — | 361.3 | ASHRAE/T | |
| THU40W***U | 48.8 | 8197 | 27978 | 3.18 | — | 361.3 | ASHRAE/T | |
| TE | TE680RC | 68.0 | 12830 | 43776 | 3.35 | — | 410.5 | ASHRAE/T |
| TE708RC | 70.8 | 13250 | 45209 | 3.35 | — | 410.5 | ASHRAE/T | |
| TE800RC | 80.0 | 15050 | 51351 | 3.30 | — | 441.1 | ASHRAE/T | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Standard |
|---|---|
| Warranty: | 1 Year |
| Usage: | Air Condition Compressor |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2024-02-11
China supplier Air Compressor Spare Parts 26000BTU CHINAMFG R22 pH430g2as-4mu1 Compressor for Sale with high quality
Product Description
| Model | Displ. | Capacity | Capacity | Power | COP | Capacitor | Height | Discharge Pipe I.D. | Suction Pipe I.D. |
| cm³/rev | W | Btu/h | W | w/w | uF/V | mm | mm | mm | |
| PA71M0A-3FZU | 7.1 | 2065 | 7062 | 670 | 3.08 | 25/370 | 251 | 8.1 | 9.8 |
| PA89M0A-3FZU | 8.9 | 2602 | 8898 | 845 | 3.08 | 25/370 | 251 | 8.1 | 9.8 |
| PA108M1C-3FZDU1 | 10.8 | 3110 | 10611 | 1045 | 2.98 | 35/370 | 279 | 8.1 | 12.9 |
| PA118M1C-3FZU | 11.8 | 3390 | 11567 | 1125 | 3.01 | 35/370 | 279 | 8.1 | 12.9 |
| PA130K1C-3DZ1 | 13.0 | 3830 | 13060 | 1235 | 3.10 | 40/370 | 298 | 8.1 | 12.9 |
| PA140K1C-3FT3 | 13.9 | 4240 | 14458 | 1402 | 3.03 | 40/370 | 298 | 8.1 | 12.9 |
| PA150K1C-3FT3 | 15.1 | 4445 | 15157 | 1505 | 2.95 | 40/370 | 298 | 8.1 | 12.9 |
| PA160M2A-3ETU | 16.0 | 4785 | 16325 | 1570 | 3.05 | 40/370 | 303 | 9.8 | 12.9 |
| PA165M2A-3ETU | 16.5 | 4935 | 16876 | 1618 | 3.05 | 60/370 | 344 | 9.8 | 16.2 |
| PA170M2A-3ETU | 17.0 | 5084 | 17387 | 1667 | 3.05 | 40/370 | 303 | 9.8 | 12.9 |
| PA240M2A-3MTU2 | 24.0 | 7160 | 24430 | 2365 | 3.03 | 55/370 | 322 | 9.8 | 16.2 |
| PA271X3CS-3MUU1 | 26.9 | 8155 | 27825 | 2640 | 3.09 | 55/400 | 382 | 9.8 | 16.2 |
| PA291X3CS-3MTTU | 28.8 | 8850 | 30196 | 2805 | 3.08 | 55/400 | 382 | 9.8 | 16.2 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Standard |
|---|---|
| Warranty: | 1 Year |
| Usage: | for Air Conditioner |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-06
China high quality Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hrm051t4 in Stock with high quality
Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Hrm051t4 |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2024-01-11