Product Description
Smart Choice for Air Solution
Our products help customers to achieve sustainable productivity in a wide range of markets,
including general engineering, manufacturing industries, construction, and much more. With a golden heart of the rotary screw air compressor, we make sure our products are running at maximum efficiency and minimum downtime at our customers’ sites.
| Model Number | AS-100HB |
| Pressure | 7/8/10/12bar |
| Capacity | 12m3/min |
| Dimensions(mm) Air Cooled | 1800*1200*1540 |
| Weight | 1150kg |
| Noise | 72dB(A) |
We developed our own special rotors, which provide energy savings of up to 15% compared to other conventional rotor designs.
Our roller bearings guarantee that our airends live much longer than ever before.
The capacity of rotary screw compressors are perfectly regulated by our inlet valves.
Our factory is able to produce 2500 sets per month.
About Airstone
Our Company was founded in HangZhou, China in 2000, and has since expanded with a broad international network to serve customers in every corner of the globe.
We set offices and facilities in Chang’an, HangZhou, 30 minutes drive from HangZhou Bao’an International Airport, highly convenient for your business visits.
With a group of classic Chinese hardworking team, we have been on the leading edge of compressed air solutions, for 20 years.
Our expert knowledge of air compressor makes every communication with customers as good as always.
No Cercern for Any Damage or Delay
Our strong sense of responsibility doesn’t allow any worries to bother you.
Our professionally trained packing&moving team ensures your shipments are safe and secure during the entire process.
Less than 2 hours road trip from our factory to HangZhoug Harbor.
Stay Connected
Don’t forget to follow me on social media for the latest.
tyson_jetzt
Feel free to contact, get answers in no time.
Tyson Jetzt
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-12-13
China supplier Hot Sell 185cfm 5m3/Min Diesel Screw Air Compressor air compressor parts
Product Description
| Model | MDS185-7P | |||||||||
| Compressor | Air delivery |
m3/min | 5.18 | |||||||
| cu.ft/min | 185 | |||||||||
| Discharge pressure | bar | 7 | ||||||||
| psig | 101.5 | |||||||||
| Lubricating Oil capacity | L | 23 | ||||||||
| Diesel Engine |
Manufacture&Model | Perkins 4O4D-22 | ||||||||
| Cylinder Number | 4 | |||||||||
| Displacement(L) | 2.7 | |||||||||
| Rotation speed(Rmp) | Operating | 2500 | ||||||||
| Idle speed(r/min) | 1800 | |||||||||
| Rated power(KW) | 42 | |||||||||
| Lubricating Oil capacity(L) | 7 | |||||||||
| Coolant Capacity(L) | 9 | |||||||||
| Battery | 6-QW-80 | |||||||||
| Others | Dimension | L(mm) | 3050 | |||||||
| W(mm) | 1740 | |||||||||
| H(mm) | 1660 | |||||||||
| Weight(kg) | 1400 | |||||||||
| Standard Configuration |
. Suction valve Lubricating oil filter Oil thermostatic valve 50°C radiator
Solenoid valve Vertical air/oil tank Pressure regular valve Air/oil separator
Lubricating oil radiator Safety valve Emergency stop button Air filter of engine
Minimum pressure valve Lockable battery isolator switch
Air filter of compressor Vent valve Powder coated canopy Shuttle valve
24V sealed for life maintenance free battery Fuel tank for 8 hours running
| General Features |
| Structure diagram |
1.Exhaust Outlet 2. Lifting bail 3. Door 4.Handle
5.Service Valve 6. Instrument panel 7.Radiator filler 8. Oil drain
| Feature&Benefit | ||||||||||
| Feature | Benefit | |||||||||
| Pressure selection and control | Easy pressure setting | |||||||||
| Flow selection and control | The working pressure and airflow rate can be adjusted according to the size of air consumption without wasting any diesel | |||||||||
| The twin-screw rotor is directly connected with the diesel engine by a highly flexible coupling | Outputting more air with less energy consumption, featuring high reliability, longer service life, and low maintenance cost. | |||||||||
| The two-stage air filtration system | The total efficiency of air filtration reaches 99.8% ensuring the compressor to not be infringed by dust and dirt particles and longer service life of the engine | |||||||||
| High-temperature resistance design | Able to run for a long time under extreme cold or hot temperature from -20ºC to 50ºC | |||||||||
| One-button start, clear operational parameters | Operators don’t have to go through long-term professional training, and unattended operations can be achieved. | |||||||||
| Application areas |
| Application | Nominal Working Pressure(bar) | Free Air Delivery Range(m3/min) | ||||||||
| General Construction (building sites, road maintenance, bridges, tunnels, concrete pumping and shotcreting) |
Hand-held pneumatic breakers | 7~14 | 5~13 | |||||||
| Jack hammers | ||||||||||
| Air guns | ||||||||||
| Shotcrete equipment | ||||||||||
| Pneumatic wrenches | ||||||||||
| Nut runners | ||||||||||
| Ground Engineering Drilling (basement and foundation excavation for apartment blocks and other buildings) |
Pneumatic rock drills | 7~17 | 12~28 | |||||||
| Block cutters | ||||||||||
| Dewatering pumps. | ||||||||||
| Hand-held pneumatic breakers | ||||||||||
| Utility, CHINAMFG Blasting (shipyards, steel construction and large renovation jobs) |
Sandblasting (remove rust, scale, paint) |
7~10 | 10~22 | |||||||
| Blast Hole Drilling (aggregate production for construction stabilization, cement production in limestone quarries and open pit mining) |
Rock drills | 14~21 | 12~29 | |||||||
| Dewatering pumps | ||||||||||
| Hand-held breakers | ||||||||||
| High Pressure Drilling (drilling for water wells and foundations for high-rise buildings, along with geotechnical/geothermal applications) |
Water well drilling | 20~35 | 18~40 | |||||||
| DTH drilling | ||||||||||
| Rotary drilling | ||||||||||
| Selection table |
| Small Series | ||||||||||
| Small Series | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS55S-7 | 1.55 | 55 | 7 | 101.5 | D902 | 2925 | 1650 | 1200 | 1200 | 600 |
| MDS80S-7 | 2.24 | 80 | 7 | 101.5 | D1005 | 2925 | 1650 | 1200 | 1200 | 630 |
| MDS100S-7 | 2.8 | 100 | 7 | 101.5 | V1505 | 2925 | 1650 | 1200 | 1200 | 640 |
| MDS125S-7 | 3.5 | 125 | 7 | 101.5 | V1505 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS130S-8 | 3.7 | 132 | 8 | 116 | JE493 | 3065 | 1800 | 1500 | 1350 | 810 |
| MDS185S-7 | 5.18 | 185 | 7 | 101.5 | JE493 | 3200 | 1900 | 1740 | 1660 | 950 |
| MDS185S-10 | 5.18 | 185 | 10 | 145 | JE493 | 3050 | 1900 | 1740 | 1660 | 950 |
| Middle Series (Low&Medium pressure) | ||||||||||
| Middle Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS265S-7 | 7.42 | 265 | 7 | 101.5 | JE493 | 3629 | 2200 | 1700 | 1470 | 1200 |
| MDS300S-14 | 8.4 | 300 | 14 | 203 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS350S-10 | 9.9 | 354 | 10 | 145 | 4BT3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-7 | 11 | 393 | 7 | 101.5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS390S-13 | 11 | 393 | 13 | 188.5 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS429S-7 | 12 | 429 | 7 | 101.5 | 4BTA3.9 | 3850 | 2600 | 1810 | 2378 | 1800 |
| MDS429S-14 | 12 | 429 | 14 | 203 | QSB4.5 | 3850 | 3100 | 1810 | 2378 | 1980 |
| MDS500S-14 | 14.1 | 504 | 14 | 203 | 6BTAA5.9 | 4550 | 3600 | 1810 | 2378 | 3100 |
| MDS690S-14 | 19.3 | 689 | 14 | 203 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS720S-10 | 20.2 | 721 | 10 | 145 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS750S-12 | 21 | 750 | 12 | 174 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS786S-10.3 | 22 | 786 | 10.3 | 149.35 | QSB6.7 | 4950 | 3300 | 2170 | 2620 | 3500 |
| MDS820S-14 | 23 | 821 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS850S-8.6 | 24 | 857 | 8.6 | 124.7 | 6CTAA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| MDS900S-7.1 | 25.3 | 904 | 7.1 | 102.95 | 6CTA8.3 | 5300 | 4200 | 2170 | 2630 | 4600 |
| Middle Series (Medium&High pressure) | ||||||||||
| Middle Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS460S-17 | 13 | 464 | 17 | 246.5 | 6BTAA5.9 | 4600 | 3500 | 1800 | 2230 | 3500 |
| MDS620S-17 | 17.4 | 621 | 17 | 246.5 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS650S-19 | 18.2 | 650 | 19 | 275.5 | QSL8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS690S-20.4 | 19.4 | 693 | 20.4 | 295.8 | 6LTAA8.9 | 5300 | 4200 | 2170 | 2630 | 5200 |
| MDS770S-21 | 21.6 | 771 | 21 | 304.5 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS830S-18 | 23.2 | 830 | 18 | 261 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS820S-25 | 23 | 821 | 25 | 362.5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| MDS860S-20.4/17.3 | 24.2 | 864 | 20.4 | 295.8 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 24.2 | 864 | 17.3 | 250.85 | |||||||
| MDS875S-23 | 24.5 | 875 | 23 | 333.5 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5600 |
| Large Series (Low&Medium pressure) | ||||||||||
| Large Series (Low&Medium pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-14.2/10.5 | 25.1 | 896 | 14.2 | 205.9 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| 25.2 | 900 | 10.5 | 152.25 | |||||||
| MDS910S-14 | 25.6 | 914 | 14 | 203 | 6LTAA8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS970S-10 | 27.2 | 971 | 10 | 145 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1011S-8.6 | 28.3 | 1011 | 8.6 | 124.7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1054S-12 | 29.5 | 1054 | 12 | 174 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1250S-8.6 | 35 | 1250 | 8.6 | 124.7 | QSL8.9 | 5300 | 4200 | 2100 | 2630 | 5280 |
| MDS1400S-13 | 40 | 1400 | 13 | 188.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1600S-10.3 | 45 | 1600 | 10.3 | 149.35 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS1785S-13 | 50 | 1785 | 13 | 188.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 5800 |
| MDS2140S-10 | 60 | 2142 | 10 | 145 | QSZ14 | 7400 | 5400 | 2230 | 2630 | 8400 |
| Large Series (Medium&High pressure) | ||||||||||
| Large Series (Medium&High pressure) | FAD | Pressure | Engine model | Dimensional Date(mm) | ||||||
| m3/min | cfm | Bar | psig | length | width | height | weight(kg) | |||
| model | with tow bar | without tow bar | ||||||||
| MDS900S-20 | 25.3 | 904 | 20 | 290 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS960S-18 | 26.9 | 961 | 18 | 261 | QSM11 | 5300 | 4200 | 2100 | 2630 | 5800 |
| MDS1000S-35 | 28.2 | 1000 | 35 | 507.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1089S-25 | 30.5 | 1089 | 25 | 362.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1200S-24 | 33.6 | 1200 | 24 | 348 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-21 | 35 | 1250 | 21 | 304.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-25 | 35 | 1250 | 25 | 362.5 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1250S-30 | 35 | 1250 | 30 | 435 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-35 | 35 | 1250 | 35 | 507.5 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1250S-40 | 35 | 1250 | 40 | 580 | WP17G770E302 | 6200 | 4700 | 2100 | 2630 | 7800 |
| MDS1428S-18 | 40 | 1428 | 18 | 261 | QSZ13 | 6200 | 4700 | 2100 | 2630 | 7200 |
| MDS1428S-35 | 40 | 1428 | 35 | 507.5 | TAD1643VE-B | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1428S-40 | 40 | 1428 | 40 | 580 | QSK19 | 7400 | 5500 | 2180 | 2650 | 10000 |
| MDS1600S-25 | 44.8 | 1600 | 25 | 362.5 | WP17G770E302 | 7400 | 5500 | 2180 | 2650 | 10000 |
| GTL Air compressor test system |
| After-sales Service: | Online |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-12
China wholesaler 7.5kw Screw Type Air Compressor for Sale supplier
Product Description
Air Compressor are widely used in machinery, metallurgy, power electronics, pharmaceuticals, packaging, chemical, food, mining, textiles, transportation and many other industries
Screw type Air compressor
Feature: The exhaust system uses a 0~100% stepless adjustment. When the air consumption is reduced, reducing the displacement along the motor current also reduced; When there is no air, compressor running empty, empty for too long automatic shutdown. When the air consumption increases, the recovery of heavy vehicles. Optimal energy savings.
First, the full realization of “Surfaces Surface” engagement, thereby contributing to the formation of hydrodynamic lubricating film to reduce the lateral leakage through the contact zone, to improve efficiency of the compressor; The rotor and to improve processing and inspection performance.
Second, the use of “the greater trochanter, a large bearing, low speed, ” the design ideas, speed lower than other brands 30 to 50%, can reduce noise and vibration and reduce the exhaust gas temperature, increase the rigidity of the rotor, extend the service life, reduce the impurity and oil carbide sensitivity.
| Model | Power | Exhausted Volume (L/min) |
Exhausted pressure (MPa) |
Noise dB(A) | Weight (kg) |
Overall Dimension(mm) |
| LG-1.0/10 | 7.5 KW | 1.0 | 1.0 | 68 | 350 | 900 X 700 X 1040 |
| LG-1.7/7 | 11 KW | 1.7 | 0.7 | 68 | 500 | 1100 X 800 X 1500 |
| LG-2.4/7 | 15 KW | 15 | 2.4 | 69 | 550 | 1060 X 800 X 1230 |
ZheJiang CHINAMFG Industrial Paint Equipment Co., Ltd, is located in the Yangtze River CHINAMFG Economic Zone, China Industrial Painting Base, HangZhou city, ZheJiang Province. We have the plant area of 99000m2, garden-style industrial zone. We have the staff of 260, including 20 engineers with 15years designing experience. Our annual production capacity can achieve 2, 500 sets paint booth.
We adhere to the “heritage of big business style, classic gaming counterparts, – creating the world brand” core values. Pursuit high goals, has won wide recognition and praise from the government and the market.
Our products are JZJ Brand spray booth, sandblasting booth, shot blasting machines etc. Our products have passed the ISO9001, EU CE, the products have been shipped in the domestic 34 provinces and more than 50 countries like Germany, Japan, Russia etc.
Our products are CHINAMFG in the industrial of the automobile, aviation, wind power, nuclear power, engineering machinery, machine tool manufacturing, and other industries.
Welcome the customers from China and all over the world to join us!
Q: What standards are you carrying out for your products?
A: We produce according to the ISO 9001 and ISO 14001 rules.
Q: How to install the machine?
A: We will arrange 1-2 engineers to your factory to guide installation and assembly.
Q: What is your international market?
A: We have exported our products to about 50 countries and regions worldwide, such as the US, France, Singapore, Australia, the Middle East, Germany, Japan, Russia, Sweden, Finland and more
Q: What is your productivity?
A: We have 2 production basement – ZheJiang CHINAMFG Industry Coating Equipment Co. Ltd and HangZhou CHINAMFG Industrial Painting Equipment Co. Ltd. We are specialized in automobile spray booth, automobile metal collision painting line, prep-station, shower test booth, sand blasting booth, shot blasting machine and more.
Our yearly productivity is 2,500 sets spray booth, so we can send you products quickly.
Q: Do you have the right to export?
A: Yes, we are registered in the customs and gained the right to export by ourselves.
Our Service
1. 24 months warranty time
2. Customization accepted
3. OEM accepted
4. Detailed installation drawings and video will be provided. If needed, we also have special experienced installing staff can go abroad to help customers install and check spray booth.
5. Prompt after-sale service. We have established perfect after-sale service system. If needed, our staff will arrive in 72 hours to repair products.
If you have interest in any of our products, please kindly contact us. If you have any questions or doubts, please also feel free to contact us.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel |
| Type: | Screw |
| Configuration: | Portable |
| Mute: | Not Mute |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-08
China supplier 30kw 40HP 37kw 50HP 45kw 60HP 55kw 75HP Screw Air Compressor Direct Drive Compressor Air arb air compressor
Product Description
ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC” .
Product Features
*Efficient permanent magnet synchronous motor using high-performance NdFeb permanent magnet, 120ºC without loss of magnetic. Through the magnetic field and magnetic force generated by the AC voltage related to the stator coil, the rotor generates rotation, low speed and high efficiency.
*Advanced level of integrated host design. High efficiency, low speed, low noise, low energy consumption, low maintenance cost, reliable stability and usability. Adopt the embedded integrated shaft directly connected structure, compact structure, high transmission efficiency.
*Large capacity oil and gas separator, coupled with sophisticated oil and gas separation elements and gas, liquid filtration elements, with 3 times oil and gas separation, to ensure the quality of compressed air.
*Intake valve plate adopts international advanced technology, coupled with reasonable noise reduction design, intake valve adjustment range 0-100% easy to adjust, small pressure loss, long life.
*High efficiency cooler adopts large heat exchange area design, improve cooling efficiency, effectively imitation machine high temperature, anti-corrosion treatment of the inner wall, the use of more severe mining, prolong the service life.
| TECHNICAL DATA—-OIL INJECTED SERIES |
|||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Pipe Diameter | Dimension LxWxH (mm) | |
| BO-7.5 | 7.5kw | 10hp | 7 | 1.2 | 66±2 | G 1/2″ | 800*700*930 |
| 8 | 1.1 | ||||||
| 10 | 0.95 | ||||||
| 12 | 1.8 | ||||||
| BO-11 | 11kw | 15hp | 7 | 1.65 | 68±2 | G 3/4″ | 950*750*1250 |
| 8 | 1.5 | ||||||
| 10 | 1.3 | ||||||
| 12 | 1.1 | ||||||
| BO-15 | 15kw | 20hp | 7 | 2.5 | |||
| 8 | 2.3 | ||||||
| 10 | 2.1 | ||||||
| 12 | 1.9 | ||||||
| BO-18.5D | 18.5kw | 25hp | 7 | 3.2 | G 1″ | 1380*850*1160 | |
| 8 | 3.0 | ||||||
| 10 | 2.7 | ||||||
| 12 | 2.4 | ||||||
| BO-22D | 22kw | 30hp | 7 | 3.8 | |||
| 8 | 3.6 | ||||||
| 10 | 3.2 | ||||||
| 12 | 2.7 | ||||||
| BO-30D | 30kw | 40hp | 7 | 5.3 | |||
| 8 | 5.0 | ||||||
| 10 | 4.5 | ||||||
| 12 | 4.0 | ||||||
| BO-37D | 37kw | 50hp | 7 | 6.8 | G 1-1/2″ | 1500*1000*1330 | |
| 8 | 6.2 | ||||||
| 10 | 5.6 | ||||||
| 12 | 5.0 | ||||||
| BO-45D | 45kw | 60hp | 7 | 7.4 | 72±2 | ||
| 8 | 7.0 | ||||||
| 10 | 6.2 | ||||||
| 12 | 5.6 | ||||||
| BO-55D | 55kw | 75hp | 7 | 10.0 | G 2″ | 1900*1250*1570 | |
| 8 | 9.6 | ||||||
| 10 | 8.5 | ||||||
| 12 | 7.6 | ||||||
| BO-75D | 75kw | 100hp | 7 | 13.4 | |||
| 8 | 12.6 | ||||||
| 10 | 11.2 | ||||||
| 12 | 10.0 | ||||||
| BO-90D | 90kw | 125hp | 7 | 16.2 | |||
| 8 | 15.0 | ||||||
| 10 | 13.8 | ||||||
| 12 | 12.3 | ||||||
| BO-110D | 110kw | 150hp | 7 | 21.0 | G 2-1/2″ | 2500*1470*1840 | |
| 8 | 19.8 | ||||||
| 10 | 17.4 | ||||||
| 12 | 14.8 | ||||||
| BO-132D | 132kw | 175hp | 7 | 24.5 | 75±2 | ||
| 8 | 23.2 | ||||||
| 10 | 20.5 | ||||||
| 12 | 17.4 | ||||||
| BO-160D | 160kw | 220hp | 7 | 28.7 | |||
| 8 | 27.6 | ||||||
| 10 | 24.6 | ||||||
| 12 | 21.5 | ||||||
| BO-185D | 185kw | 250hp | 7 | 32.0 | DN85 | 3150*1980*2150 | |
| 8 | 30.4 | ||||||
| 10 | 27.4 | ||||||
| 12 | 24.8 | ||||||
| BO-220D | 220kw | 300hp | 7 | 36.0 | 82±2 | ||
| 8 | 34.3 | ||||||
| 10 | 30.2 | ||||||
| 12 | 27.7 | ||||||
| BO-250D | 250kw | 350hp | 7 | 42.0 | |||
| 8 | 40.5 | ||||||
| 10 | 38.2 | ||||||
| 12 | 34.5 | ||||||
| BO-315D | 315kw | 430hp | 7 | 51.0 | |||
| 8 | 50.2 | ||||||
| 10 | 44.5 | ||||||
| 12 | 39.5 | ||||||
| BO-355D | 355kw | 480hp | 7 | 64.0 | 84±2 | DN100 | |
| 8 | 61 | ||||||
| 10 | 56.5 | ||||||
| 12 | 49.0 | ||||||
| BO-400D | 400kw | 545hp | 7 | 71.2 | |||
| 8 | 68.1 | ||||||
| 10 | 62.8 | ||||||
| 12 | 62.2 | ||||||
| TECHNICAL DATA |
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang , China.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-12-08
China Standard Popular Selling Plant Use Efficient Fixed Speed Screw Air Compressor supplier
Product Description
Product Description
Screw air compressor
Due to its simple structure and few vulnerable parts, the CHINAMFG can operate under the condition of large pressure difference or pressure ratio, with low exhaust temperature, insensitive to a large amount of lubricating oil (often referred to as wet stroke) contained in the refrigerant, good gas transmission regulation and forced gas transmission, and the volume flow is almost not affected by the exhaust pressure. lt can maintain high efficiency in a wide range and is suitable for a variety of working fluids without any change in the compressor structure.
Liutech screw air compressor adopts pre packaged configuration,which only needs a single power connection and compressed air connection, and has a built-in cooling system,which greatly simplifies the installation work CHINAMFG screw air compressor consistently provides high-quality compressed air for all walks of life with its advantages of high efficiency, high efficiency.low maintenance cost and high reliability.
Detailed Photos
Product Parameters
|
Power |
7kw – 560kw |
|
Discharge Pressure |
7/8/10/12/13 bar |
|
Color |
Optional |
|
Voltage |
110v 220v 380v Customizable |
|
Noise level |
Silent |
|
OEM |
Accepted |
|
Video outgoing-inspection |
Provided |
|
Warranty of core components |
5 years |
Company Profile
Our Advantages
Certifications
Packaging & Shipping
| After-sales Service: | Online Guidance |
|---|---|
| Warranty: | 2 Years |
| Motor Power: | 4-30 Kw |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-11-27
China supplier 11kw 15HP Stationary Industrial Air Cooled Electric Permanent Magnet Variable Frequency Air Compressor Rotary Screw Type Air Compressor Dm-15A best air compressor
Product Description
Product Description
HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate normally in a high temperature environment of 46°C.
Product Feature
1. Adhering to the concept of pursuing high-quality products, HS series compressors are designed in accordance with the subtropical high temperature and high humidity working environment, and the optimized cooling design ensures that the unit can operate continuously and normally in a high temperature environment of 46 °C.
2. Adopt the world-renowned CHINAMFG main motor. The protection grade is IP55. The insulation grade is F grade 100.
3. The gas circuit adopts the stainless steel pipe design of the American SAE standard, with low resistance and strong corrosion resistance, which completely eliminates the common problems of oil leakage, air leakage and air leakage under high pressure.
4. The patented synchronous two-stage compression technology is adopted, so that the compression ratio of each stage of the screw host is less than 6, which is lower than that of the ordinary screw air compressor, which ensures the service life of the screw host.
5. Each stage of the screw host has an independent oil cooling system and an automatic water removal system to ensure that the screw host can run stably around the clock.
6. The powerful third-generation e-Control controller has 6 operation monitoring points to comprehensively monitor the working conditions of the main engine, air filter, oil filter, oil separator, cooler and other important components, so that the compressor can run stably.
Specification
| Mode | HSV75A (W)-40 | HSV90A (W)-40 | HSV110A (W)-40 | HSV132A (W)-40 |
| Operating Pressure Bar (g) | 40 | 40 | 40 | 40 |
| Motor speed (kw) | 75 | 90 | 110 | 132 |
| Exhaust volume (m³/min) | 5.5 | 7.2 | 9.0 | 10.0 |
| Cooling method | water cooling | water cooling | water cooling | water cooling |
| Noise dB(A) | 72(75) | 74(78) | 74(78) | 74(78) |
| Length | 2550 | 3150 | 3150 | 3150 |
| Width | 1480 | 1880 | 1880 | 1880 |
| Height | 1850 | 1850 | 1850 | 1850 |
| Mode | HSV75A (W)-35 | HSV110A (W)-30 | HSV55A-25 | HSV90A-25 |
| Operating Pressure Bar(g) | 35 | 30 | 25 | 25 |
| Motor speed (kw) | 75 | 110 | 55 | 90 |
| Exhaust volume (m³/min) | 7.6 | 11.0 | 5.4 | 9.5 |
| Cooling method | air cooling (water cooling ) | air cooling(water cooling ) | 74(78) | air cooling |
| Noise dB(A) | 72(75) | 74(78) | 72(75) | 74(78) |
| Length | 2550 | 3150 | 2550 | 3150 |
| Width | 1480 | 1880 | 1480 | 1880 |
| Height | 1850 | 1850 | 1850 | 1850 |
| Mode | HSV180A-25 | HSV110A (W)-20 | ||
| Operating Pressure Ba(g) | 25 | 20 | ||
| Motor speed (kw) | 180 | 110 | ||
| Exhaust volume (m³/min) | 19.0 | 12.5 | ||
| Cooling method | air cooling(water cooling ) | air cooling(water cooling ) | ||
| Noise dB(A) | 78(82) | 74(78) | ||
| Length | 3980 | 3150 | ||
| Width | 1980 | 1880 | ||
| Height | 1980 | 1850 |
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-11-21
China supplier Low Pressure Air Compressor 3~5bar VSD Fixed Speed Screw Air Compressor with Great quality
Product Description
Product Description
Product features of low pressure screw air compressor
1. Adopt large rotor and low speed to ensure high performance of the machine;
2. Increase oil and gas separation equipment to ensure that the export oil content is ≤3ppm;
3. The air source of the low-pressure screw air compressor is clean, which reduces the number of cleaning nozzles of texturing machines and other equipment, and improves the quality of the finished product;
4. The heat dissipation area of the oil cooler is increased by more than 30% to ensure normal operation in summer without over-temperature;
5. Independently design the internal pressure ratio of the host to ensure a better specific power;
6. Intelligent control system, automatically adjust the exhaust volume according to the customer’s usage (frequency conversion model).
7. For the texturing industry, ensure long-term continuous operation, set fault warnings, and do not stop immediately, so that customers are fully prepared for shutdown;
8. Adopting dual air outlet design, the air outlet temperature can be adjusted according to climate changes, meeting customer needs to a greater extent, and achieving high efficiency and energy saving at the same time.
1. Efficient airend
There is no intermediate transmission, so there is no energy loss; direct drive increases reliability and reduces maintenance costs; large rotors run at low speeds, with higher efficiency, lower noise, lower vibration, and lower energy consumption.
2. High-quality independent oil pump forced lubrication design
(1) Forced lubrication with independent oil pump;
(2) Ensure that there is sufficient fuel injection and a better air-fuel mixture ratio under extremely low exhaust pressure (2kg).
3. Increase customized oil and gas separation system
Increase the customized oil and gas separation system to ensure the ultimate oil and gas separation effect and ensure that the oil content of the air is less than 3ppm.
Application industry
Company Profile
Certifications
Product process
Packaging & Shipping
Packaging & Shipping
1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
4.Delivery time: in 7-15 days after receiving deposit (customized machines not included)
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24month |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 67537/SET
1 SET(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2023-11-20
China supplier Double Stage Pm VSD Electric Rotary Industrial Two Stage Screw Air Compressor portable air compressor
Product Description
Product Description
Double stage PM VSD Electric Rotary Industrial Screw Type Two Stage Air Compressor For Sale
Permanent magnet variable frequency 2 stage screw air compressor:
1. Constant pressure control: It can realize high-precision constant pressure control with a pressure fluctuation range of 0.01 MPa;
2. Variable frequency soft start: Eliminate the CHINAMFG current when starting, avoid grid impact, avoid current impact through step-by-step speed adjustment, and improve flexibility
3. Prevent no-load: The compressor is no-load during operation, reducing ineffective energy consumption;
Permanent magnet motors use high-efficiency rare earth magnets, no loss of magnetism at 180°C, and long service life; energy saving is about 6% to 7% compared with ordinary frequency conversion motors;
It can exert the highest efficiency in a wider range and make the air compressor more energy-saving.
Technical Parameters
| Two-stage PM VSD Screw Air Compressor | |||||||||
| Model | Air Delivery (m3/min) | Power (kW) |
Noise (Db) |
Outlet diameter |
Dimension (mm) | Weight (Kg) |
|||
| 7bar | 8bar | 10bar | 13 bar | L * W * H | |||||
| RK30APMII | 1.4-4.5 | 1.3-4.2 | 1.1-3.5 | 0.8-2.7 | 22 | 68 | G11/2 | 1350x850x1110 | 600 |
| RK40APMII | 1.8-6.0 | 1.7-5.9 | 1.4-4.7 | 1.2-4.0 | 30 | 68 | G11/2 | 1200x1000x1350 | 700 |
| RK50APMII | 2.3-7.5 | 2.1-6.9 | 1.8-6.0 | 1.6-5.4 | 37 | 68 | G11/2 | 1500x1000x1350 | 750 |
| RK60APMII | 3.2-10.5 | 3.0-9.9 | 2.3-7.8 | 2.0-6.8 | 45 | 72 | G2 | 2100x1300x1650 | 1250 |
| RK75APMII | 4.1-13.6 | 3.8-12.5 | 3.0-10.1 | 2.3-7.5 | 55 | 76 | G2 | 2100x1300x1650 | 1300 |
| RK100APMII | 4.8-16.0 | 4.7-15.5 | 3.8-12.8 | 3.1-10.2 | 75 | 76 | G2 | 2100x1300x1650 | 1350 |
| RK125APMII | 6.2-20.7 | 5.9-19.5 | 4.8-16.2 | 4.2-14.0 | 90 | 76 | DN80 | 2500x1650x1900 | 2700 |
| RK150APMII | 7.4-24.8 | 7.2-24.0 | 6.1-20.2 | 4.8-16.0 | 110 | 76 | DN80 | 2500x1650x1900 | 2800 |
| RK180APMII | 8.7-29.0 | 8.4-28.0 | 7.1-23.7 | 5.7-19.0 | 132 | 78 | DN80 | 2500x1650x1900 | 3000 |
| RK220APMII | 10.2-34.0 | 9.8-32.5 | 8.4-28.0 | 6.9-23.0 | 160 | 78 | DN80 | 3000x1900x1950 | 4300 |
| RK250APMII | 11.7-39.0 | 10.8-36.0 | 9.6-32.0 | 8.3-27.5 | 185 | 78 | DN80 | 3000x1900x1950 | 4400 |
| RK275APMII | 13.1-43.5 | 12.3-41.0 | 10.7-35.5 | 9.5-31.5 | 200 | 78 | DN100 | 3600x2200x2200 | 5000 |
| RK300APMII | 15.5-51.5 | 14.5-48.3 | 11.6-38.5 | 10.7-35.5 | 220 | 82 | DN100 | 3600x2200x2200 | 5500 |
| RK350APMII | 16.2-54.0 | 15.3-51.0 | 13.5-45.0 | 11.4-38.0 | 250 | 82 | DN100 | 3600x2200x2200 | 6000 |
| RK380APMII | 18.0-60.0 | 17.1-57.0 | 15.0-50.0 | 12.9-43.0 | 280 | 82 | DN125 | 3600x2200x2200 | 6800 |
| RK420APMII | 19.5-65.0 | 18.6-62.0 | 16.8-56.0 | 15.2-50.5 | 315 | 82 | DN125 | 4200x2300x2350 | 8000 |
| RK480APMII | 22.5-75.0 | 21.9-73.0 | 19.2-64.0 | 16.5-55.0 | 355 | 82 | DN150 | 4200x2200x2350 | 8500 |
| RK540APMII | 25.2-84.0 | 24.6-82.0 | 21.6-72.0 | 18.3-61.0 | 400 | 82 | DN150 | 4200x2200x2350 | 9800 |
Two stage air end
Feature:Two-stage compressor air-end
Advantage:Low compression ratio, Low temperature rising, Low air leakage
Benefit:15% energy-saving
High-efficiency Motor
Feature:IE4 permanent magnet motor/IE4 High-efficiency motor
Advantage:Motor efficiency 97%
Benefit:5% energy-saving
Intelligent control
Feature:VFD system
Advantage:Constant pressure output to remove pressure fluctuation and off-load, Constant temperature output at 9-~85°C, Low starting current to protect components
Benefit:15% energy-saving
Smart display screen
Feature:Intelligent control system
Advantage:10 inch monitor to show all the date
Benefit:Simple operation and touble free
Cooling fan
Feature:Large cooler system
Advantage:Axial flow Fan used for good cooling effect
Benefit:Allow ambient temperature at 52°C
Systematic Design of Oil separator
Feature:Large oil system
Advantage:Reduce internal pressure loss avoid oil, Leakage for safety
Benefit:3% energy-saving
Filter
Feature:Double filtering system
Advantage:Remove impurity from air and cleanness
Benefit:Longer life air -end and lubrication oil
Air inlet valve
Feature:High vacuum degree:700mmHg
Advantage:Large suction area, Low load energy consumption in unloaded operation,
Fast check: prevent unloading and shutdown oil injection
Benefit:Cast aluminum to avoid rust and temperature change
Certifications
Two-stage compression variable frequency air compressors are widely used in electronics, metallurgy, aerospace, pipelines, furniture processing, machinery, petroleum gas, printing plants, plastic products, power plants, blow molding, painting, casting, spraying, automotive industry, metal industry , shipping terminals, food industry, textile factories, beverage factories and other industries.
Packaging & Shipping
Packaging & Shipping
1.Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
2.Shipping method: by sea, by LCL/FCL or as requested
3.Delivery method: FOB, CFR, CIF and EXW etc.
4.Delivery time: in 7-15 days after receiving deposit (customized machines not included)
Successful cases
Company Profile
ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!
Product process
After Sales Service
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in CHINAMFG air compressor factory or working site.
5.All kinds of technical documents in different languages.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 24month |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-11-17
China supplier Oil Free/ Oil Less Screw Air Compressor (SCR180G) supplier
Product Description
If you are interested in any of our
FAQ
|
1 What trade terms do we provide? What kind of settlement currency do we offer? |
|
Trade term :CIF ,CFR ,FOB,Ex-Works |
|
2 How long is our delivery? |
|
Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case. |
|
3 What is the voltage of the compressor? |
|
The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage according to customer requirement. |
|
4 Can our compressor run in high temperature environment? What is the working temperature range for our machine? |
|
Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. |
|
5 What’s the min. Order requirement ? |
|
Min. Order requirement is 1PCS. |
| Performance: | Low Noise |
|---|---|
| Drive Mode: | Electric |
| Configuration: | Stationary |
| Application: | Air Power |
| High Quality: | Good Performance |
| Save Energy: | Environment-Friendly |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-11-13
China high quality Energy Saving High Quality 10HP 7.5kw 3.6m3/Min Screw Air Compressor for Food & Beverage Factory supplier
Product Description
| Item No.: | HR-7.5 |
| Ambient temperature: | -5~45 ºC |
| Cooling method: | Air Cooling |
| Oil content of gas : | ≤0.01mm |
| Noise: | 63±2 dB |
| Inlet /outlet size : | G ½ |
| Overall Size: | 700*570*800mm |
Product descriptions
Company Profile
Certifications
Packing & Delivery
FAQ
1. Why do customers choose us?
HIROSS INDUSTRY MACHINERY CO.,ltd have more than 15 years experience in designing,researching and
developing and manufacturing the purify,environment friendly,energy saving equipment.Product various from compressed air dryer,dehumidifier,filter,chiller,to accessories,etc.
2.Are you a manufacturer or a trading company?
We are a professional manufacturer in HangZhou, China has a large modern factory, with a professional design team. Two can accept OEM & ODM services.
3.Where is your factory? How can I visit it? Our factory is located in HangZhou City, ZheJiang Province, China. We can pick you up from HangZhou, about 1 hour from HangZhou airport to our factory. Welcome to our company!
4.What is your delivery time?
We can deliver within 15 days. For urgent orders, please contact our sales staff in advance.
5. How long is your air compressor warranty period?
We can provide some spare parts for the whole machine for 1 year Quality is everything. We attach great importance to quality control from the beginning to the end. Our factory has passed ISO9001 certification and CE certification.
6.How long can your air compressor last?
Usually more than 10 years.
7.What are the terms of payment?
T / T, L / C, D / P, Western Union, credit card and so on. We can accept US dollar, RMB, Euro yuan and other currencies.
8. How is your customer service? 24-hour online
service. 48 hour problem solving commitment.
9.How about your after-sales service?
(1) To provide customers with online guidance for installation and debugging.
(2) Trained engineers can serve overseas.
(3) Provide global agency and after-sales service.
| After-sales Service: | Online Guidance |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Samples: |
US$ 785/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-11-10